--- language: - en license: apache-2.0 datasets: - databricks/databricks-dolly-15k pipeline_tag: text-generation base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T model-index: - name: TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 30.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 53.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 35.85 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 58.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1 name: Open LLM Leaderboard --- TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using dolly dataset. Training took 1 hour on an 'ml.g5.xlarge' instance. ```python hyperparameters ={ 'num_train_epochs': 3, # number of training epochs 'per_device_train_batch_size': 6, # batch size for training 'gradient_accumulation_steps': 2, # Number of updates steps to accumulate 'gradient_checkpointing': True, # save memory but slower backward pass 'bf16': True, # use bfloat16 precision 'tf32': True, # use tf32 precision 'learning_rate': 2e-4, # learning rate 'max_grad_norm': 0.3, # Maximum norm (for gradient clipping) 'warmup_ratio': 0.03, # warmup ratio "lr_scheduler_type":"constant", # learning rate scheduler 'save_strategy': "epoch", # save strategy for checkpoints "logging_steps": 10, # log every x steps 'merge_adapters': True, # wether to merge LoRA into the model (needs more memory) 'use_flash_attn': True, # Whether to use Flash Attention } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_habanoz__TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1) | Metric |Value| |---------------------------------|----:| |Avg. |34.04| |AI2 Reasoning Challenge (25-Shot)|30.55| |HellaSwag (10-Shot) |53.70| |MMLU (5-Shot) |26.07| |TruthfulQA (0-shot) |35.85| |Winogrande (5-shot) |58.09| |GSM8k (5-shot) | 0.00|