--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: UIT-VSFC-Bert-CLSModel-v2 results: [] --- # UIT-VSFC-Bert-CLSModel-v2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3111 - Accuracy: 0.8970 - F1: 0.6735 - Precision: 0.8209 - Recall: 0.6603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 90 | 0.5202 | 0.8023 | 0.5646 | 0.7190 | 0.5744 | | No log | 2.0 | 180 | 0.3222 | 0.8844 | 0.6687 | 0.7587 | 0.6550 | | No log | 3.0 | 270 | 0.3111 | 0.8970 | 0.6735 | 0.8209 | 0.6603 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1