haining commited on
Commit
dad96b2
1 Parent(s): cc7e7ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -11
README.md CHANGED
@@ -9,10 +9,11 @@ language:
9
  license: mit
10
  metrics:
11
  - sacrebleu
12
- - BERT_score
13
- - ROUGE
14
- - METEOR
15
- - SARI
 
16
  - "Automated Readability Index"
17
  tags:
18
  - "text2text generation"
@@ -39,7 +40,7 @@ widget:
39
  Scientific Abstract Simplification-baseline *translates* hard-to-read scientific abstracts😵 into more accessible language😇. We hope it can make scientific knowledge accessible for everyone🤗.
40
 
41
  Try it now with the Hosted inference API on the right.
42
- You can choose an existing example or paste in any (perhaps full-of-jargon) abstract. Remember to prepend the instruction before the abstract ("summarize, simplify, and contextualize: "; notice, there is a whitespace after the colon). Local use refers to Section [Usage](/Usage).
43
 
44
 
45
  # Model Details
@@ -63,9 +64,9 @@ As an ongoing effort, we are working on re-contextualizating abstracts for bette
63
 
64
  - **Model type:** Language model
65
  - **Developed by:**
66
- - Mentors: Jason Clark and Hannah McKelvey
67
  - Fellows: Haining Wang and Deanna Zarrillo
68
- - [LEADING](https://cci.drexel.edu/mrc/leading/) Montana State University Library ("TL;DR it": Automating Article Synopses for Search Engine Optimization and Citizen Science).
69
  - **Language(s) (NLP):** English
70
  - **License:** MIT
71
  - **Parent Model:** [FLAN-T5-large](https://huggingface.co/google/flan-t5-large)
@@ -74,7 +75,7 @@ As an ongoing effort, we are working on re-contextualizating abstracts for bette
74
 
75
  # Usage
76
 
77
- Use the code below to get started with the model.
78
 
79
  ```python
80
  import torch
@@ -94,7 +95,7 @@ encoding = tokenizer(INSTRUCTION + input_text,
94
  return_tensors='pt')
95
  decoded_ids = model.generate(input_ids=encoding['input_ids'],
96
  attention_mask=encoding['attention_mask'],
97
- max_new_tokens=512,
98
  top_p=.9,
99
  do_sample=True)
100
 
@@ -134,14 +135,14 @@ The model is evaluated on the SAS test set using the following metrics.
134
  - [The Automated Readability Index (ARI)](https://www.readabilityformulas.com/automated-readability-index.php): ARI is a readability test designed to assess the understandability of a text. Like other popular readability formulas, the ARI formula outputs a number which approximates the grade level needed to comprehend the text. For example, if the ARI outputs the number 10, this equates to a high school student, ages 15-16 years old; a number 3 means students in 3rd grade (ages 8-9 yrs. old) should be able to comprehend the text.
135
 
136
 
137
- Implementations of sacreBLEU, BERT Score, ROUGLE, METEOR, and SARI are from Huggingface [`evaluate`](https://pypi.org/project/evaluate/) v.0.3.0. ARI is from [`py-readability-metrics`](https://pypi.org/project/py-readability-metrics/) v.1.4.5.
138
 
139
 
140
  ## Results
141
 
142
  | Metrics | SAS-baseline |
143
  |----------------|-------------------|
144
- | sacreBLEU↑ | 20.97 |
145
  | BERT Score F1↑ | 0.89 |
146
  | ROUGLE-1↑ | 0.48 |
147
  | ROUGLE-2↑ | 0.23 |
 
9
  license: mit
10
  metrics:
11
  - sacrebleu
12
+ - bert_score
13
+ - rouge
14
+ - meteor
15
+ - sari
16
+ - ari
17
  - "Automated Readability Index"
18
  tags:
19
  - "text2text generation"
 
40
  Scientific Abstract Simplification-baseline *translates* hard-to-read scientific abstracts😵 into more accessible language😇. We hope it can make scientific knowledge accessible for everyone🤗.
41
 
42
  Try it now with the Hosted inference API on the right.
43
+ You can choose an existing example or paste in any (perhaps full-of-jargon) abstract. Remember to prepend the instruction to the abstract ("summarize, simplify, and contextualize: "; notice, there is a whitespace after the colon). Local use refers to Section [Usage](/Usage).
44
 
45
 
46
  # Model Details
 
64
 
65
  - **Model type:** Language model
66
  - **Developed by:**
67
+ - PIs: Jason Clark and Hannah McKelvey
68
  - Fellows: Haining Wang and Deanna Zarrillo
69
+ - [LEADING](https://cci.drexel.edu/mrc/leading/) Montana State University Library, Project "TL;DR it": Automating Article Synopses for Search Engine Optimization and Citizen Science
70
  - **Language(s) (NLP):** English
71
  - **License:** MIT
72
  - **Parent Model:** [FLAN-T5-large](https://huggingface.co/google/flan-t5-large)
 
75
 
76
  # Usage
77
 
78
+ Use the code below to get started with the model. Remember to prepend the `INSTRUCTION` for best performance.
79
 
80
  ```python
81
  import torch
 
95
  return_tensors='pt')
96
  decoded_ids = model.generate(input_ids=encoding['input_ids'],
97
  attention_mask=encoding['attention_mask'],
98
+ max_length=512,
99
  top_p=.9,
100
  do_sample=True)
101
 
 
135
  - [The Automated Readability Index (ARI)](https://www.readabilityformulas.com/automated-readability-index.php): ARI is a readability test designed to assess the understandability of a text. Like other popular readability formulas, the ARI formula outputs a number which approximates the grade level needed to comprehend the text. For example, if the ARI outputs the number 10, this equates to a high school student, ages 15-16 years old; a number 3 means students in 3rd grade (ages 8-9 yrs. old) should be able to comprehend the text.
136
 
137
 
138
+ Implementations of SacreBLEU, BERT Score, ROUGLE, METEOR, and SARI are from Huggingface [`evaluate`](https://pypi.org/project/evaluate/) v.0.3.0. ARI is from [`py-readability-metrics`](https://pypi.org/project/py-readability-metrics/) v.1.4.5.
139
 
140
 
141
  ## Results
142
 
143
  | Metrics | SAS-baseline |
144
  |----------------|-------------------|
145
+ | SacreBLEU↑ | 20.97 |
146
  | BERT Score F1↑ | 0.89 |
147
  | ROUGLE-1↑ | 0.48 |
148
  | ROUGLE-2↑ | 0.23 |