File size: 15,370 Bytes
62cd4ef
 
0ac09fe
62cd4ef
 
 
 
 
 
 
 
0ac09fe
62cd4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ac09fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62cd4ef
0ac09fe
 
 
 
62cd4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
2022-03-27 02:06:28,163 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,170 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): WordEmbeddings('fa')
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(5105, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=5105, bias=True)
      )
    )
    (list_embedding_2): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(5105, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=5105, bias=True)
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
  (rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=17, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
)"
2022-03-27 02:06:28,173 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,178 Corpus: "Corpus: 23060 train + 4070 dev + 4150 test sentences"
2022-03-27 02:06:28,184 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,189 Parameters:
2022-03-27 02:06:28,194  - learning_rate: "0.1"
2022-03-27 02:06:28,198  - mini_batch_size: "4"
2022-03-27 02:06:28,203  - patience: "3"
2022-03-27 02:06:28,207  - anneal_factor: "0.5"
2022-03-27 02:06:28,212  - max_epochs: "2"
2022-03-27 02:06:28,217  - shuffle: "True"
2022-03-27 02:06:28,219  - train_with_dev: "False"
2022-03-27 02:06:28,225  - batch_growth_annealing: "False"
2022-03-27 02:06:28,227 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,231 Model training base path: "/content/gdrive/MyDrive/project/data/ner/model2"
2022-03-27 02:06:28,238 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,242 Device: cuda:0
2022-03-27 02:06:28,244 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,247 Embeddings storage mode: none
2022-03-27 02:06:30,459 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:30,469 Testing using last state of model ...
2022-03-27 02:12:42,501 0.8475	0.7185	0.7777	0.647
2022-03-27 02:12:42,506 
Results:
- F-score (micro) 0.7777
- F-score (macro) 0.7833
- Accuracy 0.647

By class:
              precision    recall  f1-score   support

         LOC     0.8821    0.7877    0.8322      4083
         ORG     0.8088    0.6105    0.6958      3166
         PER     0.8381    0.7443    0.7884      2741
         DAT     0.8298    0.6487    0.7282      1150
         MON     0.9377    0.8852    0.9107       357
         TIM     0.5741    0.5602    0.5671       166
         PCT     0.9737    0.9487    0.9610       156

   micro avg     0.8475    0.7185    0.7777     11819
   macro avg     0.8349    0.7408    0.7833     11819
weighted avg     0.8457    0.7185    0.7757     11819
 samples avg     0.6470    0.6470    0.6470     11819

2022-03-27 02:12:42,508 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,163 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,170 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): WordEmbeddings('fa')
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(5105, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=5105, bias=True)
      )
    )
    (list_embedding_2): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(5105, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=5105, bias=True)
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
  (rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=17, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
)"
2022-03-27 02:06:28,173 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,178 Corpus: "Corpus: 23060 train + 4070 dev + 4150 test sentences"
2022-03-27 02:06:28,184 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,189 Parameters:
2022-03-27 02:06:28,194  - learning_rate: "0.1"
2022-03-27 02:06:28,198  - mini_batch_size: "4"
2022-03-27 02:06:28,203  - patience: "3"
2022-03-27 02:06:28,207  - anneal_factor: "0.5"
2022-03-27 02:06:28,212  - max_epochs: "2"
2022-03-27 02:06:28,217  - shuffle: "True"
2022-03-27 02:06:28,219  - train_with_dev: "False"
2022-03-27 02:06:28,225  - batch_growth_annealing: "False"
2022-03-27 02:06:28,227 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,231 Model training base path: "/content/gdrive/MyDrive/project/data/ner/model2"
2022-03-27 02:06:28,238 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,242 Device: cuda:0
2022-03-27 02:06:28,244 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:28,247 Embeddings storage mode: none
2022-03-27 02:06:30,459 ----------------------------------------------------------------------------------------------------
2022-03-27 02:06:30,469 Testing using last state of model ...
2022-03-27 02:12:42,501 0.8475	0.7185	0.7777	0.647
2022-03-27 02:12:42,506 
Results:
- F-score (micro) 0.7777
- F-score (macro) 0.7833
- Accuracy 0.647

By class:
              precision    recall  f1-score   support

         LOC     0.8821    0.7877    0.8322      4083
         ORG     0.8088    0.6105    0.6958      3166
         PER     0.8381    0.7443    0.7884      2741
         DAT     0.8298    0.6487    0.7282      1150
         MON     0.9377    0.8852    0.9107       357
         TIM     0.5741    0.5602    0.5671       166
         PCT     0.9737    0.9487    0.9610       156

   micro avg     0.8475    0.7185    0.7777     11819
   macro avg     0.8349    0.7408    0.7833     11819
weighted avg     0.8457    0.7185    0.7757     11819
 samples avg     0.6470    0.6470    0.6470     11819

2022-03-27 02:12:42,508 ----------------------------------------------------------------------------------------------------