hamedkhaledi
commited on
Commit
•
3364279
1
Parent(s):
c56b4aa
Update Model for 150 epochs
Browse files- loss.tsv +22 -0
- pytorch_model.bin +1 -1
- training.log +441 -217
loss.tsv
CHANGED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
130 09:22:28 0 0.0063 0.03227379332607771 0.10123619437217712 0.9805 0.9805 0.9805 0.9805
|
3 |
+
131 09:33:55 0 0.0063 0.03189648172162635 0.10127950459718704 0.9806 0.9806 0.9806 0.9806
|
4 |
+
132 09:45:42 1 0.0063 0.032241732218855866 0.10122731328010559 0.9802 0.9802 0.9802 0.9802
|
5 |
+
133 09:57:21 2 0.0063 0.03195716355896702 0.10153035819530487 0.9801 0.9801 0.9801 0.9801
|
6 |
+
134 10:08:40 3 0.0063 0.031534249190336365 0.10191945731639862 0.9799 0.9799 0.9799 0.9799
|
7 |
+
135 10:19:37 4 0.0063 0.029244637998201428 0.10203799605369568 0.9799 0.9799 0.9799 0.9799
|
8 |
+
136 10:30:32 1 0.0031 0.02976911773623663 0.10185939818620682 0.9799 0.9799 0.9799 0.9799
|
9 |
+
137 10:41:57 2 0.0031 0.03082571269609888 0.10173739492893219 0.9797 0.9797 0.9797 0.9797
|
10 |
+
138 10:52:54 3 0.0031 0.02959066016151137 0.10195963829755783 0.9799 0.9799 0.9799 0.9799
|
11 |
+
139 11:03:40 4 0.0031 0.03130254794008425 0.10206855833530426 0.98 0.98 0.98 0.98
|
12 |
+
140 11:14:53 1 0.0016 0.029843543924926445 0.10188718885183334 0.9799 0.9799 0.9799 0.9799
|
13 |
+
141 11:26:18 2 0.0016 0.029058541560262836 0.10185949504375458 0.98 0.98 0.98 0.98
|
14 |
+
142 11:38:10 3 0.0016 0.029598048380359752 0.1019764393568039 0.98 0.98 0.98 0.98
|
15 |
+
143 11:49:28 4 0.0016 0.03080275615996397 0.10188134014606476 0.9799 0.9799 0.9799 0.9799
|
16 |
+
144 12:00:31 1 0.0008 0.028860038155361815 0.10193286091089249 0.9799 0.9799 0.9799 0.9799
|
17 |
+
145 12:11:16 2 0.0008 0.0304064639599492 0.1020410880446434 0.9799 0.9799 0.9799 0.9799
|
18 |
+
146 12:21:52 3 0.0008 0.02969052164078641 0.10200724005699158 0.9799 0.9799 0.9799 0.9799
|
19 |
+
147 12:32:24 4 0.0008 0.03015248635106209 0.10197500139474869 0.9799 0.9799 0.9799 0.9799
|
20 |
+
148 12:43:20 1 0.0004 0.02951219604467988 0.1020146831870079 0.9799 0.9799 0.9799 0.9799
|
21 |
+
149 12:54:20 2 0.0004 0.029664987677396 0.10201691836118698 0.9799 0.9799 0.9799 0.9799
|
22 |
+
150 13:05:16 3 0.0004 0.0290418906386102 0.10202094167470932 0.9799 0.9799 0.9799 0.9799
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 415512212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec710a5705a5f64239a93eb6cf4c17b6c197beda086cf843080a8bf95ae57a7b
|
3 |
size 415512212
|
training.log
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
2022-03-
|
2 |
-
2022-03-
|
3 |
(embeddings): StackedEmbeddings(
|
4 |
(list_embedding_0): WordEmbeddings('fa')
|
5 |
(list_embedding_1): FlairEmbeddings(
|
@@ -28,227 +28,451 @@
|
|
28 |
(weights): None
|
29 |
(weight_tensor) None
|
30 |
)"
|
31 |
-
2022-03-
|
32 |
-
2022-03-
|
33 |
-
2022-03-
|
34 |
-
2022-03-
|
35 |
-
2022-03-
|
36 |
-
2022-03-
|
37 |
-
2022-03-
|
38 |
-
2022-03-
|
39 |
-
2022-03-
|
40 |
-
2022-03-
|
41 |
-
2022-03-
|
42 |
-
2022-03-
|
43 |
-
2022-03-
|
44 |
-
2022-03-
|
45 |
-
2022-03-
|
46 |
-
2022-03-
|
47 |
-
2022-03-
|
48 |
-
2022-03-
|
49 |
-
2022-03-
|
50 |
-
2022-03-
|
51 |
-
2022-03-
|
52 |
-
2022-03-
|
53 |
-
2022-03-
|
54 |
-
2022-03-
|
55 |
-
2022-03-
|
56 |
-
2022-03-
|
57 |
-
2022-03-
|
58 |
-
2022-03-
|
59 |
-
2022-03-
|
60 |
-
2022-03-
|
61 |
-
2022-03-
|
62 |
-
2022-03-
|
63 |
-
2022-03-
|
64 |
-
2022-03-
|
65 |
-
2022-03-
|
66 |
-
2022-03-
|
67 |
-
2022-03-
|
68 |
-
2022-03-
|
69 |
-
2022-03-
|
70 |
-
2022-03-
|
71 |
-
2022-03-
|
72 |
-
2022-03-
|
73 |
-
2022-03-
|
74 |
-
2022-03-
|
75 |
-
2022-03-
|
76 |
-
2022-03-
|
77 |
-
2022-03-
|
78 |
-
2022-03-
|
79 |
-
2022-03-
|
80 |
-
2022-03-
|
81 |
-
2022-03-
|
82 |
-
2022-03-
|
83 |
-
2022-03-
|
84 |
-
2022-03-
|
85 |
-
2022-03-
|
86 |
-
2022-03-
|
87 |
-
2022-03-
|
88 |
-
2022-03-
|
89 |
-
2022-03-
|
90 |
-
2022-03-
|
91 |
-
2022-03-
|
92 |
-
2022-03-
|
93 |
-
2022-03-
|
94 |
-
2022-03-
|
95 |
-
2022-03-
|
96 |
-
2022-03-
|
97 |
-
2022-03-
|
98 |
-
2022-03-
|
99 |
-
2022-03-
|
100 |
-
2022-03-
|
101 |
-
2022-03-
|
102 |
-
2022-03-
|
103 |
-
2022-03-
|
104 |
-
2022-03-
|
105 |
-
2022-03-
|
106 |
-
2022-03-
|
107 |
-
2022-03-
|
108 |
-
2022-03-
|
109 |
-
2022-03-
|
110 |
-
2022-03-
|
111 |
-
2022-03-
|
112 |
-
2022-03-
|
113 |
-
2022-03-
|
114 |
-
2022-03-
|
115 |
-
2022-03-
|
116 |
-
2022-03-
|
117 |
-
2022-03-
|
118 |
-
2022-03-
|
119 |
-
2022-03-
|
120 |
-
2022-03-
|
121 |
-
2022-03-
|
122 |
-
2022-03-
|
123 |
-
2022-03-
|
124 |
-
2022-03-
|
125 |
-
2022-03-
|
126 |
-
2022-03-
|
127 |
-
2022-03-
|
128 |
-
2022-03-
|
129 |
-
2022-03-
|
130 |
-
2022-03-
|
131 |
-
2022-03-
|
132 |
-
2022-03-
|
133 |
-
2022-03-
|
134 |
-
2022-03-
|
135 |
-
2022-03-
|
136 |
-
2022-03-
|
137 |
-
2022-03-
|
138 |
-
2022-03-
|
139 |
-
2022-03-
|
140 |
-
2022-03-
|
141 |
-
2022-03-
|
142 |
-
2022-03-
|
143 |
-
2022-03-
|
144 |
-
2022-03-
|
145 |
-
2022-03-
|
146 |
-
2022-03-
|
147 |
-
2022-03-
|
148 |
-
2022-03-
|
149 |
-
2022-03-
|
150 |
-
2022-03-
|
151 |
-
2022-03-
|
152 |
-
2022-03-
|
153 |
-
2022-03-
|
154 |
-
2022-03-
|
155 |
-
2022-03-
|
156 |
-
2022-03-
|
157 |
-
2022-03-
|
158 |
-
2022-03-
|
159 |
-
2022-03-
|
160 |
-
2022-03-
|
161 |
-
2022-03-
|
162 |
-
2022-03-
|
163 |
-
2022-03-
|
164 |
-
2022-03-
|
165 |
-
2022-03-
|
166 |
-
2022-03-
|
167 |
-
2022-03-
|
168 |
-
2022-03-
|
169 |
-
2022-03-
|
170 |
-
2022-03-
|
171 |
-
2022-03-
|
172 |
-
2022-03-
|
173 |
-
2022-03-
|
174 |
-
2022-03-
|
175 |
-
2022-03-
|
176 |
-
2022-03-
|
177 |
-
2022-03-
|
178 |
-
2022-03-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
Results:
|
180 |
-
- F-score (micro) 0.
|
181 |
-
- F-score (macro) 0.
|
182 |
-
- Accuracy 0.
|
183 |
|
184 |
By class:
|
185 |
precision recall f1-score support
|
186 |
|
187 |
-
NOUN 0.
|
188 |
-
ADP 0.
|
189 |
-
ADJ 0.
|
190 |
PUNCT 1.0000 1.0000 1.0000 1365
|
191 |
-
VERB 0.
|
192 |
-
CCONJ 0.
|
193 |
-
AUX 0.
|
194 |
-
PRON 0.
|
195 |
-
SCONJ 0.
|
196 |
-
NUM 0.9948
|
197 |
-
ADV 0.
|
198 |
-
DET 0.
|
199 |
PART 0.9916 1.0000 0.9958 237
|
200 |
-
INTJ
|
201 |
-
X 0.
|
202 |
|
203 |
-
micro avg 0.
|
204 |
-
macro avg 0.
|
205 |
-
weighted avg 0.
|
206 |
-
samples avg 0.
|
207 |
|
208 |
-
2022-03-
|
209 |
-
iter 120/300 - loss 0.12117075 - samples/sec: 8.14 - lr: 0.100000
|
210 |
-
2022-03-26 19:45:17,232 epoch 10 - iter 150/300 - loss 0.12210352 - samples/sec: 8.09 - lr: 0.100000
|
211 |
-
2022-03-26 19:46:19,236 epoch 10 - iter 180/300 - loss 0.12216010 - samples/sec: 7.84 - lr: 0.100000
|
212 |
-
2022-03-26 19:47:13,956 epoch 10 - iter 210/300 - loss 0.12109513 - samples/sec: 8.90 - lr: 0.100000
|
213 |
-
2022-03-26 19:48:10,196 epoch 10 - iter 240/300 - loss 0.12159190 - samples/sec: 8.65 - lr: 0.100000
|
214 |
-
2022-03-26 19:49:07,814 epoch 10 - iter 270/300 - loss 0.12185842 - samples/sec: 8.44 - lr: 0.100000
|
215 |
-
2022-03-26 19:50:05,726 epoch 10 - iter 300/300 - loss 0.12154911 - samples/sec: 8.40 - lr: 0.100000
|
216 |
-
2022-03-26 19:50:06,487 ----------------------------------------------------------------------------------------------------
|
217 |
-
2022-03-26 19:50:06,493 EPOCH 10 done: loss 0.1215 - lr 0.1000000
|
218 |
-
2022-03-26 19:50:42,216 DEV : loss 0.0763716846704483 - f1-score (micro avg) 0.9749
|
219 |
-
2022-03-26 19:50:42,228 BAD EPOCHS (no improvement): 0
|
220 |
-
2022-03-26 19:50:44,090 saving best model
|
221 |
-
2022-03-26 19:50:48,236 ----------------------------------------------------------------------------------------------------
|
222 |
-
2022-03-26 19:50:48,294 loading file /content/drive/MyDrive/project/data/upos/model/best-model.pt
|
223 |
-
2022-03-26 19:58:45,547 0.9732 0.9732 0.9732 0.9732
|
224 |
-
2022-03-26 19:58:45,553
|
225 |
-
Results:
|
226 |
-
- F-score (micro) 0.9732
|
227 |
-
- F-score (macro) 0.9036
|
228 |
-
- Accuracy 0.9732
|
229 |
-
|
230 |
-
By class:
|
231 |
-
precision recall f1-score support
|
232 |
-
|
233 |
-
NOUN 0.9705 0.9850 0.9777 6420
|
234 |
-
ADP 0.9921 0.9900 0.9911 1909
|
235 |
-
ADJ 0.9293 0.8964 0.9126 1525
|
236 |
-
PUNCT 1.0000 1.0000 1.0000 1365
|
237 |
-
VERB 0.9855 0.9553 0.9702 1141
|
238 |
-
CCONJ 0.9950 0.9937 0.9943 794
|
239 |
-
AUX 0.9402 0.9799 0.9596 546
|
240 |
-
PRON 0.9586 0.9865 0.9724 517
|
241 |
-
SCONJ 0.9857 0.9737 0.9796 494
|
242 |
-
NUM 0.9948 0.9844 0.9896 385
|
243 |
-
ADV 0.9277 0.8867 0.9068 362
|
244 |
-
DET 0.9836 0.9614 0.9724 311
|
245 |
-
PART 0.9916 1.0000 0.9958 237
|
246 |
-
INTJ 1.0000 0.6000 0.7500 10
|
247 |
-
X 0.3333 0.1250 0.1818 8
|
248 |
-
|
249 |
-
micro avg 0.9732 0.9732 0.9732 16024
|
250 |
-
macro avg 0.9325 0.8879 0.9036 16024
|
251 |
-
weighted avg 0.9729 0.9732 0.9729 16024
|
252 |
-
samples avg 0.9732 0.9732 0.9732 16024
|
253 |
-
|
254 |
-
2022-03-26 19:58:45,558 ----------------------------------------------------------------------------------------------------
|
|
|
1 |
+
2022-03-30 07:52:04,950 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-03-30 07:52:04,958 Model: "SequenceTagger(
|
3 |
(embeddings): StackedEmbeddings(
|
4 |
(list_embedding_0): WordEmbeddings('fa')
|
5 |
(list_embedding_1): FlairEmbeddings(
|
|
|
28 |
(weights): None
|
29 |
(weight_tensor) None
|
30 |
)"
|
31 |
+
2022-03-30 07:52:04,960 ----------------------------------------------------------------------------------------------------
|
32 |
+
2022-03-30 07:52:04,967 Corpus: "Corpus: 4798 train + 599 dev + 600 test sentences"
|
33 |
+
2022-03-30 07:52:04,970 ----------------------------------------------------------------------------------------------------
|
34 |
+
2022-03-30 07:52:04,973 Parameters:
|
35 |
+
2022-03-30 07:52:04,977 - learning_rate: "0.00625"
|
36 |
+
2022-03-30 07:52:04,986 - mini_batch_size: "16"
|
37 |
+
2022-03-30 07:52:04,993 - patience: "3"
|
38 |
+
2022-03-30 07:52:04,995 - anneal_factor: "0.5"
|
39 |
+
2022-03-30 07:52:04,999 - max_epochs: "200"
|
40 |
+
2022-03-30 07:52:05,001 - shuffle: "True"
|
41 |
+
2022-03-30 07:52:05,004 - train_with_dev: "False"
|
42 |
+
2022-03-30 07:52:05,016 - batch_growth_annealing: "False"
|
43 |
+
2022-03-30 07:52:05,019 ----------------------------------------------------------------------------------------------------
|
44 |
+
2022-03-30 07:52:05,021 Model training base path: "/content/drive/MyDrive/project/data/upos/model"
|
45 |
+
2022-03-30 07:52:05,023 ----------------------------------------------------------------------------------------------------
|
46 |
+
2022-03-30 07:52:05,027 Device: cpu
|
47 |
+
2022-03-30 07:52:05,029 ----------------------------------------------------------------------------------------------------
|
48 |
+
2022-03-30 07:52:05,030 Embeddings storage mode: gpu
|
49 |
+
2022-03-30 07:52:05,718 ----------------------------------------------------------------------------------------------------
|
50 |
+
2022-03-30 08:00:20,625 epoch 130 - iter 30/300 - loss 0.03267748 - samples/sec: 0.97 - lr: 0.006250
|
51 |
+
2022-03-30 08:08:05,510 epoch 130 - iter 60/300 - loss 0.03183758 - samples/sec: 1.03 - lr: 0.006250
|
52 |
+
2022-03-30 08:16:39,338 epoch 130 - iter 90/300 - loss 0.03310138 - samples/sec: 0.94 - lr: 0.006250
|
53 |
+
2022-03-30 08:24:54,316 epoch 130 - iter 120/300 - loss 0.03337116 - samples/sec: 0.97 - lr: 0.006250
|
54 |
+
2022-03-30 08:32:46,929 epoch 130 - iter 150/300 - loss 0.03255506 - samples/sec: 1.02 - lr: 0.006250
|
55 |
+
2022-03-30 08:41:23,256 epoch 130 - iter 180/300 - loss 0.03223376 - samples/sec: 0.93 - lr: 0.006250
|
56 |
+
2022-03-30 08:49:42,419 epoch 130 - iter 210/300 - loss 0.03220594 - samples/sec: 0.96 - lr: 0.006250
|
57 |
+
2022-03-30 08:57:44,963 epoch 130 - iter 240/300 - loss 0.03212158 - samples/sec: 1.00 - lr: 0.006250
|
58 |
+
2022-03-30 09:05:42,177 epoch 130 - iter 270/300 - loss 0.03242742 - samples/sec: 1.01 - lr: 0.006250
|
59 |
+
2022-03-30 09:13:37,521 epoch 130 - iter 300/300 - loss 0.03227379 - samples/sec: 1.01 - lr: 0.006250
|
60 |
+
2022-03-30 09:13:38,432 ----------------------------------------------------------------------------------------------------
|
61 |
+
2022-03-30 09:13:38,441 EPOCH 130 done: loss 0.0323 - lr 0.0062500
|
62 |
+
2022-03-30 09:22:28,190 DEV : loss 0.10123619437217712 - f1-score (micro avg) 0.9805
|
63 |
+
2022-03-30 09:22:28,203 BAD EPOCHS (no improvement): 0
|
64 |
+
2022-03-30 09:22:30,400 saving best model
|
65 |
+
2022-03-30 09:22:32,790 ----------------------------------------------------------------------------------------------------
|
66 |
+
2022-03-30 09:23:33,426 epoch 131 - iter 30/300 - loss 0.03217341 - samples/sec: 7.92 - lr: 0.006250
|
67 |
+
2022-03-30 09:24:34,156 epoch 131 - iter 60/300 - loss 0.03280988 - samples/sec: 8.05 - lr: 0.006250
|
68 |
+
2022-03-30 09:25:36,132 epoch 131 - iter 90/300 - loss 0.03307191 - samples/sec: 7.90 - lr: 0.006250
|
69 |
+
2022-03-30 09:26:37,730 epoch 131 - iter 120/300 - loss 0.03208308 - samples/sec: 7.92 - lr: 0.006250
|
70 |
+
2022-03-30 09:27:42,746 epoch 131 - iter 150/300 - loss 0.03185314 - samples/sec: 7.50 - lr: 0.006250
|
71 |
+
2022-03-30 09:28:51,373 epoch 131 - iter 180/300 - loss 0.03166563 - samples/sec: 7.12 - lr: 0.006250
|
72 |
+
2022-03-30 09:29:55,576 epoch 131 - iter 210/300 - loss 0.03182935 - samples/sec: 7.62 - lr: 0.006250
|
73 |
+
2022-03-30 09:31:03,605 epoch 131 - iter 240/300 - loss 0.03156167 - samples/sec: 7.18 - lr: 0.006250
|
74 |
+
2022-03-30 09:32:15,124 epoch 131 - iter 270/300 - loss 0.03182382 - samples/sec: 6.84 - lr: 0.006250
|
75 |
+
2022-03-30 09:33:17,573 epoch 131 - iter 300/300 - loss 0.03189648 - samples/sec: 7.84 - lr: 0.006250
|
76 |
+
2022-03-30 09:33:18,844 ----------------------------------------------------------------------------------------------------
|
77 |
+
2022-03-30 09:33:18,855 EPOCH 131 done: loss 0.0319 - lr 0.0062500
|
78 |
+
2022-03-30 09:33:55,554 DEV : loss 0.10127950459718704 - f1-score (micro avg) 0.9806
|
79 |
+
2022-03-30 09:33:55,573 BAD EPOCHS (no improvement): 0
|
80 |
+
2022-03-30 09:33:57,817 saving best model
|
81 |
+
2022-03-30 09:34:00,204 ----------------------------------------------------------------------------------------------------
|
82 |
+
2022-03-30 09:35:12,825 epoch 132 - iter 30/300 - loss 0.03402971 - samples/sec: 6.61 - lr: 0.006250
|
83 |
+
2022-03-30 09:36:22,700 epoch 132 - iter 60/300 - loss 0.03264956 - samples/sec: 7.02 - lr: 0.006250
|
84 |
+
2022-03-30 09:37:32,308 epoch 132 - iter 90/300 - loss 0.03345275 - samples/sec: 7.05 - lr: 0.006250
|
85 |
+
2022-03-30 09:38:38,115 epoch 132 - iter 120/300 - loss 0.03354812 - samples/sec: 7.46 - lr: 0.006250
|
86 |
+
2022-03-30 09:39:44,471 epoch 132 - iter 150/300 - loss 0.03282504 - samples/sec: 7.36 - lr: 0.006250
|
87 |
+
2022-03-30 09:40:49,418 epoch 132 - iter 180/300 - loss 0.03263641 - samples/sec: 7.53 - lr: 0.006250
|
88 |
+
2022-03-30 09:41:55,844 epoch 132 - iter 210/300 - loss 0.03231144 - samples/sec: 7.37 - lr: 0.006250
|
89 |
+
2022-03-30 09:42:55,650 epoch 132 - iter 240/300 - loss 0.03227446 - samples/sec: 8.18 - lr: 0.006250
|
90 |
+
2022-03-30 09:43:58,522 epoch 132 - iter 270/300 - loss 0.03245053 - samples/sec: 7.81 - lr: 0.006250
|
91 |
+
2022-03-30 09:45:03,752 epoch 132 - iter 300/300 - loss 0.03224173 - samples/sec: 7.49 - lr: 0.006250
|
92 |
+
2022-03-30 09:45:05,008 ----------------------------------------------------------------------------------------------------
|
93 |
+
2022-03-30 09:45:05,017 EPOCH 132 done: loss 0.0322 - lr 0.0062500
|
94 |
+
2022-03-30 09:45:42,784 DEV : loss 0.10122731328010559 - f1-score (micro avg) 0.9802
|
95 |
+
2022-03-30 09:45:42,797 BAD EPOCHS (no improvement): 1
|
96 |
+
2022-03-30 09:45:44,948 ----------------------------------------------------------------------------------------------------
|
97 |
+
2022-03-30 09:46:55,002 epoch 133 - iter 30/300 - loss 0.03269861 - samples/sec: 6.85 - lr: 0.006250
|
98 |
+
2022-03-30 09:47:56,852 epoch 133 - iter 60/300 - loss 0.03223739 - samples/sec: 7.96 - lr: 0.006250
|
99 |
+
2022-03-30 09:48:58,825 epoch 133 - iter 90/300 - loss 0.03190079 - samples/sec: 7.90 - lr: 0.006250
|
100 |
+
2022-03-30 09:50:06,466 epoch 133 - iter 120/300 - loss 0.03202131 - samples/sec: 7.22 - lr: 0.006250
|
101 |
+
2022-03-30 09:51:13,277 epoch 133 - iter 150/300 - loss 0.03154350 - samples/sec: 7.38 - lr: 0.006250
|
102 |
+
2022-03-30 09:52:18,131 epoch 133 - iter 180/300 - loss 0.03188183 - samples/sec: 7.56 - lr: 0.006250
|
103 |
+
2022-03-30 09:53:23,838 epoch 133 - iter 210/300 - loss 0.03109959 - samples/sec: 7.44 - lr: 0.006250
|
104 |
+
2022-03-30 09:54:30,950 epoch 133 - iter 240/300 - loss 0.03185256 - samples/sec: 7.28 - lr: 0.006250
|
105 |
+
2022-03-30 09:55:36,895 epoch 133 - iter 270/300 - loss 0.03213568 - samples/sec: 7.44 - lr: 0.006250
|
106 |
+
2022-03-30 09:56:44,302 epoch 133 - iter 300/300 - loss 0.03195716 - samples/sec: 7.26 - lr: 0.006250
|
107 |
+
2022-03-30 09:56:45,573 ----------------------------------------------------------------------------------------------------
|
108 |
+
2022-03-30 09:56:45,584 EPOCH 133 done: loss 0.0320 - lr 0.0062500
|
109 |
+
2022-03-30 09:57:21,079 DEV : loss 0.10153035819530487 - f1-score (micro avg) 0.9801
|
110 |
+
2022-03-30 09:57:21,095 BAD EPOCHS (no improvement): 2
|
111 |
+
2022-03-30 09:57:23,256 ----------------------------------------------------------------------------------------------------
|
112 |
+
2022-03-30 09:58:25,099 epoch 134 - iter 30/300 - loss 0.03314154 - samples/sec: 7.76 - lr: 0.006250
|
113 |
+
2022-03-30 09:59:30,588 epoch 134 - iter 60/300 - loss 0.03131403 - samples/sec: 7.47 - lr: 0.006250
|
114 |
+
2022-03-30 10:00:32,373 epoch 134 - iter 90/300 - loss 0.03143065 - samples/sec: 7.92 - lr: 0.006250
|
115 |
+
2022-03-30 10:01:36,218 epoch 134 - iter 120/300 - loss 0.03178706 - samples/sec: 7.69 - lr: 0.006250
|
116 |
+
2022-03-30 10:02:44,074 epoch 134 - iter 150/300 - loss 0.03166911 - samples/sec: 7.23 - lr: 0.006250
|
117 |
+
2022-03-30 10:03:53,060 epoch 134 - iter 180/300 - loss 0.03108413 - samples/sec: 7.10 - lr: 0.006250
|
118 |
+
2022-03-30 10:04:57,710 epoch 134 - iter 210/300 - loss 0.03049568 - samples/sec: 7.56 - lr: 0.006250
|
119 |
+
2022-03-30 10:05:58,539 epoch 134 - iter 240/300 - loss 0.03053009 - samples/sec: 8.13 - lr: 0.006250
|
120 |
+
2022-03-30 10:06:59,522 epoch 134 - iter 270/300 - loss 0.03073424 - samples/sec: 8.01 - lr: 0.006250
|
121 |
+
2022-03-30 10:08:03,948 epoch 134 - iter 300/300 - loss 0.03153425 - samples/sec: 7.65 - lr: 0.006250
|
122 |
+
2022-03-30 10:08:05,164 ----------------------------------------------------------------------------------------------------
|
123 |
+
2022-03-30 10:08:05,172 EPOCH 134 done: loss 0.0315 - lr 0.0062500
|
124 |
+
2022-03-30 10:08:40,529 DEV : loss 0.10191945731639862 - f1-score (micro avg) 0.9799
|
125 |
+
2022-03-30 10:08:40,545 BAD EPOCHS (no improvement): 3
|
126 |
+
2022-03-30 10:08:42,752 ----------------------------------------------------------------------------------------------------
|
127 |
+
2022-03-30 10:09:49,186 epoch 135 - iter 30/300 - loss 0.02855664 - samples/sec: 7.23 - lr: 0.006250
|
128 |
+
2022-03-30 10:10:49,961 epoch 135 - iter 60/300 - loss 0.02798751 - samples/sec: 8.03 - lr: 0.006250
|
129 |
+
2022-03-30 10:11:48,628 epoch 135 - iter 90/300 - loss 0.02862530 - samples/sec: 8.36 - lr: 0.006250
|
130 |
+
2022-03-30 10:12:46,050 epoch 135 - iter 120/300 - loss 0.02734978 - samples/sec: 8.50 - lr: 0.006250
|
131 |
+
2022-03-30 10:13:48,289 epoch 135 - iter 150/300 - loss 0.02787561 - samples/sec: 7.83 - lr: 0.006250
|
132 |
+
2022-03-30 10:14:48,840 epoch 135 - iter 180/300 - loss 0.02805375 - samples/sec: 8.05 - lr: 0.006250
|
133 |
+
2022-03-30 10:15:53,142 epoch 135 - iter 210/300 - loss 0.02819357 - samples/sec: 7.57 - lr: 0.006250
|
134 |
+
2022-03-30 10:16:55,614 epoch 135 - iter 240/300 - loss 0.02857102 - samples/sec: 7.81 - lr: 0.006250
|
135 |
+
2022-03-30 10:17:57,771 epoch 135 - iter 270/300 - loss 0.02854189 - samples/sec: 7.90 - lr: 0.006250
|
136 |
+
2022-03-30 10:18:56,900 epoch 135 - iter 300/300 - loss 0.02924464 - samples/sec: 8.32 - lr: 0.006250
|
137 |
+
2022-03-30 10:18:58,001 ----------------------------------------------------------------------------------------------------
|
138 |
+
2022-03-30 10:18:58,011 EPOCH 135 done: loss 0.0292 - lr 0.0062500
|
139 |
+
2022-03-30 10:19:37,487 DEV : loss 0.10203799605369568 - f1-score (micro avg) 0.9799
|
140 |
+
2022-03-30 10:19:37,508 BAD EPOCHS (no improvement): 4
|
141 |
+
2022-03-30 10:19:40,464 ----------------------------------------------------------------------------------------------------
|
142 |
+
2022-03-30 10:20:42,433 epoch 136 - iter 30/300 - loss 0.02678492 - samples/sec: 7.75 - lr: 0.003125
|
143 |
+
2022-03-30 10:21:45,796 epoch 136 - iter 60/300 - loss 0.02964621 - samples/sec: 7.75 - lr: 0.003125
|
144 |
+
2022-03-30 10:22:53,636 epoch 136 - iter 90/300 - loss 0.02966682 - samples/sec: 7.32 - lr: 0.003125
|
145 |
+
2022-03-30 10:23:51,242 epoch 136 - iter 120/300 - loss 0.02938922 - samples/sec: 8.49 - lr: 0.003125
|
146 |
+
2022-03-30 10:24:52,074 epoch 136 - iter 150/300 - loss 0.02991657 - samples/sec: 8.06 - lr: 0.003125
|
147 |
+
2022-03-30 10:25:55,338 epoch 136 - iter 180/300 - loss 0.03012840 - samples/sec: 7.71 - lr: 0.003125
|
148 |
+
2022-03-30 10:26:58,329 epoch 136 - iter 210/300 - loss 0.03004874 - samples/sec: 7.74 - lr: 0.003125
|
149 |
+
2022-03-30 10:27:57,399 epoch 136 - iter 240/300 - loss 0.03035409 - samples/sec: 8.26 - lr: 0.003125
|
150 |
+
2022-03-30 10:28:56,834 epoch 136 - iter 270/300 - loss 0.03021945 - samples/sec: 8.20 - lr: 0.003125
|
151 |
+
2022-03-30 10:29:56,059 epoch 136 - iter 300/300 - loss 0.02976912 - samples/sec: 8.25 - lr: 0.003125
|
152 |
+
2022-03-30 10:29:56,997 ----------------------------------------------------------------------------------------------------
|
153 |
+
2022-03-30 10:29:57,005 EPOCH 136 done: loss 0.0298 - lr 0.0031250
|
154 |
+
2022-03-30 10:30:32,284 DEV : loss 0.10185939818620682 - f1-score (micro avg) 0.9799
|
155 |
+
2022-03-30 10:30:32,301 BAD EPOCHS (no improvement): 1
|
156 |
+
2022-03-30 10:30:34,702 ----------------------------------------------------------------------------------------------------
|
157 |
+
2022-03-30 10:31:34,245 epoch 137 - iter 30/300 - loss 0.03121086 - samples/sec: 8.06 - lr: 0.003125
|
158 |
+
2022-03-30 10:32:42,985 epoch 137 - iter 60/300 - loss 0.02851138 - samples/sec: 7.12 - lr: 0.003125
|
159 |
+
2022-03-30 10:33:46,476 epoch 137 - iter 90/300 - loss 0.02891198 - samples/sec: 7.71 - lr: 0.003125
|
160 |
+
2022-03-30 10:34:53,147 epoch 137 - iter 120/300 - loss 0.02967460 - samples/sec: 7.33 - lr: 0.003125
|
161 |
+
2022-03-30 10:35:53,437 epoch 137 - iter 150/300 - loss 0.02960777 - samples/sec: 8.11 - lr: 0.003125
|
162 |
+
2022-03-30 10:36:53,995 epoch 137 - iter 180/300 - loss 0.03064080 - samples/sec: 8.06 - lr: 0.003125
|
163 |
+
2022-03-30 10:38:02,423 epoch 137 - iter 210/300 - loss 0.03087131 - samples/sec: 7.15 - lr: 0.003125
|
164 |
+
2022-03-30 10:39:13,159 epoch 137 - iter 240/300 - loss 0.03080292 - samples/sec: 6.91 - lr: 0.003125
|
165 |
+
2022-03-30 10:40:17,139 epoch 137 - iter 270/300 - loss 0.03084099 - samples/sec: 7.66 - lr: 0.003125
|
166 |
+
2022-03-30 10:41:20,762 epoch 137 - iter 300/300 - loss 0.03082571 - samples/sec: 7.69 - lr: 0.003125
|
167 |
+
2022-03-30 10:41:22,012 ----------------------------------------------------------------------------------------------------
|
168 |
+
2022-03-30 10:41:22,022 EPOCH 137 done: loss 0.0308 - lr 0.0031250
|
169 |
+
2022-03-30 10:41:57,389 DEV : loss 0.10173739492893219 - f1-score (micro avg) 0.9797
|
170 |
+
2022-03-30 10:41:57,403 BAD EPOCHS (no improvement): 2
|
171 |
+
2022-03-30 10:41:59,737 ----------------------------------------------------------------------------------------------------
|
172 |
+
2022-03-30 10:43:02,290 epoch 138 - iter 30/300 - loss 0.02868595 - samples/sec: 7.67 - lr: 0.003125
|
173 |
+
2022-03-30 10:44:10,101 epoch 138 - iter 60/300 - loss 0.03005261 - samples/sec: 7.23 - lr: 0.003125
|
174 |
+
2022-03-30 10:45:18,374 epoch 138 - iter 90/300 - loss 0.03051957 - samples/sec: 7.17 - lr: 0.003125
|
175 |
+
2022-03-30 10:46:16,512 epoch 138 - iter 120/300 - loss 0.03062131 - samples/sec: 8.39 - lr: 0.003125
|
176 |
+
2022-03-30 10:47:20,487 epoch 138 - iter 150/300 - loss 0.03084338 - samples/sec: 7.63 - lr: 0.003125
|
177 |
+
2022-03-30 10:48:18,416 epoch 138 - iter 180/300 - loss 0.03006383 - samples/sec: 8.46 - lr: 0.003125
|
178 |
+
2022-03-30 10:49:21,648 epoch 138 - iter 210/300 - loss 0.03021354 - samples/sec: 7.71 - lr: 0.003125
|
179 |
+
2022-03-30 10:50:20,510 epoch 138 - iter 240/300 - loss 0.02932483 - samples/sec: 8.30 - lr: 0.003125
|
180 |
+
2022-03-30 10:51:20,095 epoch 138 - iter 270/300 - loss 0.02939289 - samples/sec: 8.19 - lr: 0.003125
|
181 |
+
2022-03-30 10:52:17,869 epoch 138 - iter 300/300 - loss 0.02959066 - samples/sec: 8.56 - lr: 0.003125
|
182 |
+
2022-03-30 10:52:18,790 ----------------------------------------------------------------------------------------------------
|
183 |
+
2022-03-30 10:52:18,798 EPOCH 138 done: loss 0.0296 - lr 0.0031250
|
184 |
+
2022-03-30 10:52:54,449 DEV : loss 0.10195963829755783 - f1-score (micro avg) 0.9799
|
185 |
+
2022-03-30 10:52:54,462 BAD EPOCHS (no improvement): 3
|
186 |
+
2022-03-30 10:52:56,763 ----------------------------------------------------------------------------------------------------
|
187 |
+
2022-03-30 10:53:56,820 epoch 139 - iter 30/300 - loss 0.02870452 - samples/sec: 8.00 - lr: 0.003125
|
188 |
+
2022-03-30 10:54:55,650 epoch 139 - iter 60/300 - loss 0.02865684 - samples/sec: 8.29 - lr: 0.003125
|
189 |
+
2022-03-30 10:55:57,327 epoch 139 - iter 90/300 - loss 0.03033846 - samples/sec: 7.92 - lr: 0.003125
|
190 |
+
2022-03-30 10:57:00,485 epoch 139 - iter 120/300 - loss 0.03033128 - samples/sec: 7.72 - lr: 0.003125
|
191 |
+
2022-03-30 10:58:00,955 epoch 139 - iter 150/300 - loss 0.03097701 - samples/sec: 8.09 - lr: 0.003125
|
192 |
+
2022-03-30 10:58:57,771 epoch 139 - iter 180/300 - loss 0.03067534 - samples/sec: 8.62 - lr: 0.003125
|
193 |
+
2022-03-30 10:59:56,571 epoch 139 - iter 210/300 - loss 0.03043512 - samples/sec: 8.30 - lr: 0.003125
|
194 |
+
2022-03-30 11:00:56,944 epoch 139 - iter 240/300 - loss 0.03097712 - samples/sec: 8.08 - lr: 0.003125
|
195 |
+
2022-03-30 11:01:54,372 epoch 139 - iter 270/300 - loss 0.03147405 - samples/sec: 8.53 - lr: 0.003125
|
196 |
+
2022-03-30 11:03:02,721 epoch 139 - iter 300/300 - loss 0.03130255 - samples/sec: 7.17 - lr: 0.003125
|
197 |
+
2022-03-30 11:03:04,039 ----------------------------------------------------------------------------------------------------
|
198 |
+
2022-03-30 11:03:04,047 EPOCH 139 done: loss 0.0313 - lr 0.0031250
|
199 |
+
2022-03-30 11:03:40,583 DEV : loss 0.10206855833530426 - f1-score (micro avg) 0.98
|
200 |
+
2022-03-30 11:03:40,600 BAD EPOCHS (no improvement): 4
|
201 |
+
2022-03-30 11:03:42,934 ----------------------------------------------------------------------------------------------------
|
202 |
+
2022-03-30 11:04:43,474 epoch 140 - iter 30/300 - loss 0.02956418 - samples/sec: 7.93 - lr: 0.001563
|
203 |
+
2022-03-30 11:05:46,895 epoch 140 - iter 60/300 - loss 0.03269747 - samples/sec: 7.70 - lr: 0.001563
|
204 |
+
2022-03-30 11:06:54,734 epoch 140 - iter 90/300 - loss 0.03185046 - samples/sec: 7.18 - lr: 0.001563
|
205 |
+
2022-03-30 11:07:59,429 epoch 140 - iter 120/300 - loss 0.03156745 - samples/sec: 7.54 - lr: 0.001563
|
206 |
+
2022-03-30 11:09:03,178 epoch 140 - iter 150/300 - loss 0.03111944 - samples/sec: 7.67 - lr: 0.001563
|
207 |
+
2022-03-30 11:10:03,574 epoch 140 - iter 180/300 - loss 0.03137674 - samples/sec: 8.08 - lr: 0.001563
|
208 |
+
2022-03-30 11:11:08,571 epoch 140 - iter 210/300 - loss 0.03057508 - samples/sec: 7.50 - lr: 0.001563
|
209 |
+
2022-03-30 11:12:07,984 epoch 140 - iter 240/300 - loss 0.03026252 - samples/sec: 8.21 - lr: 0.001563
|
210 |
+
2022-03-30 11:13:10,011 epoch 140 - iter 270/300 - loss 0.03010044 - samples/sec: 7.86 - lr: 0.001563
|
211 |
+
2022-03-30 11:14:13,319 epoch 140 - iter 300/300 - loss 0.02984354 - samples/sec: 7.87 - lr: 0.001563
|
212 |
+
2022-03-30 11:14:15,239 ----------------------------------------------------------------------------------------------------
|
213 |
+
2022-03-30 11:14:15,254 EPOCH 140 done: loss 0.0298 - lr 0.0015625
|
214 |
+
2022-03-30 11:14:53,914 DEV : loss 0.10188718885183334 - f1-score (micro avg) 0.9799
|
215 |
+
2022-03-30 11:14:53,932 BAD EPOCHS (no improvement): 1
|
216 |
+
2022-03-30 11:14:56,051 ----------------------------------------------------------------------------------------------------
|
217 |
+
2022-03-30 11:15:56,071 epoch 141 - iter 30/300 - loss 0.03055940 - samples/sec: 8.00 - lr: 0.001563
|
218 |
+
2022-03-30 11:17:03,620 epoch 141 - iter 60/300 - loss 0.03027722 - samples/sec: 7.22 - lr: 0.001563
|
219 |
+
2022-03-30 11:18:05,512 epoch 141 - iter 90/300 - loss 0.02871502 - samples/sec: 7.90 - lr: 0.001563
|
220 |
+
2022-03-30 11:19:09,247 epoch 141 - iter 120/300 - loss 0.02972079 - samples/sec: 7.67 - lr: 0.001563
|
221 |
+
2022-03-30 11:20:06,221 epoch 141 - iter 150/300 - loss 0.02927190 - samples/sec: 8.59 - lr: 0.001563
|
222 |
+
2022-03-30 11:21:09,274 epoch 141 - iter 180/300 - loss 0.02953372 - samples/sec: 7.73 - lr: 0.001563
|
223 |
+
2022-03-30 11:22:12,010 epoch 141 - iter 210/300 - loss 0.02986717 - samples/sec: 7.78 - lr: 0.001563
|
224 |
+
2022-03-30 11:23:27,048 epoch 141 - iter 240/300 - loss 0.02962978 - samples/sec: 6.50 - lr: 0.001563
|
225 |
+
2022-03-30 11:24:31,510 epoch 141 - iter 270/300 - loss 0.02956472 - samples/sec: 7.58 - lr: 0.001563
|
226 |
+
2022-03-30 11:25:38,381 epoch 141 - iter 300/300 - loss 0.02905854 - samples/sec: 7.34 - lr: 0.001563
|
227 |
+
2022-03-30 11:25:39,523 ----------------------------------------------------------------------------------------------------
|
228 |
+
2022-03-30 11:25:39,534 EPOCH 141 done: loss 0.0291 - lr 0.0015625
|
229 |
+
2022-03-30 11:26:18,182 DEV : loss 0.10185949504375458 - f1-score (micro avg) 0.98
|
230 |
+
2022-03-30 11:26:18,196 BAD EPOCHS (no improvement): 2
|
231 |
+
2022-03-30 11:26:20,410 ----------------------------------------------------------------------------------------------------
|
232 |
+
2022-03-30 11:27:21,964 epoch 142 - iter 30/300 - loss 0.03034100 - samples/sec: 7.80 - lr: 0.001563
|
233 |
+
2022-03-30 11:28:33,021 epoch 142 - iter 60/300 - loss 0.02986344 - samples/sec: 6.90 - lr: 0.001563
|
234 |
+
2022-03-30 11:29:40,667 epoch 142 - iter 90/300 - loss 0.03023673 - samples/sec: 7.24 - lr: 0.001563
|
235 |
+
2022-03-30 11:30:46,660 epoch 142 - iter 120/300 - loss 0.03055494 - samples/sec: 7.43 - lr: 0.001563
|
236 |
+
2022-03-30 11:31:57,441 epoch 142 - iter 150/300 - loss 0.03014855 - samples/sec: 6.89 - lr: 0.001563
|
237 |
+
2022-03-30 11:33:04,374 epoch 142 - iter 180/300 - loss 0.02997817 - samples/sec: 7.29 - lr: 0.001563
|
238 |
+
2022-03-30 11:34:11,717 epoch 142 - iter 210/300 - loss 0.02960975 - samples/sec: 7.28 - lr: 0.001563
|
239 |
+
2022-03-30 11:35:18,891 epoch 142 - iter 240/300 - loss 0.02960418 - samples/sec: 7.30 - lr: 0.001563
|
240 |
+
2022-03-30 11:36:26,640 epoch 142 - iter 270/300 - loss 0.02951040 - samples/sec: 7.20 - lr: 0.001563
|
241 |
+
2022-03-30 11:37:30,673 epoch 142 - iter 300/300 - loss 0.02959805 - samples/sec: 7.66 - lr: 0.001563
|
242 |
+
2022-03-30 11:37:32,055 ----------------------------------------------------------------------------------------------------
|
243 |
+
2022-03-30 11:37:32,065 EPOCH 142 done: loss 0.0296 - lr 0.0015625
|
244 |
+
2022-03-30 11:38:10,602 DEV : loss 0.1019764393568039 - f1-score (micro avg) 0.98
|
245 |
+
2022-03-30 11:38:10,618 BAD EPOCHS (no improvement): 3
|
246 |
+
2022-03-30 11:38:12,899 ----------------------------------------------------------------------------------------------------
|
247 |
+
2022-03-30 11:39:18,069 epoch 143 - iter 30/300 - loss 0.03082201 - samples/sec: 7.37 - lr: 0.001563
|
248 |
+
2022-03-30 11:40:24,720 epoch 143 - iter 60/300 - loss 0.03049819 - samples/sec: 7.32 - lr: 0.001563
|
249 |
+
2022-03-30 11:41:28,402 epoch 143 - iter 90/300 - loss 0.03046947 - samples/sec: 7.69 - lr: 0.001563
|
250 |
+
2022-03-30 11:42:34,764 epoch 143 - iter 120/300 - loss 0.03107469 - samples/sec: 7.36 - lr: 0.001563
|
251 |
+
2022-03-30 11:43:33,723 epoch 143 - iter 150/300 - loss 0.03117679 - samples/sec: 8.30 - lr: 0.001563
|
252 |
+
2022-03-30 11:44:38,979 epoch 143 - iter 180/300 - loss 0.03124911 - samples/sec: 7.50 - lr: 0.001563
|
253 |
+
2022-03-30 11:45:38,207 epoch 143 - iter 210/300 - loss 0.03069054 - samples/sec: 8.26 - lr: 0.001563
|
254 |
+
2022-03-30 11:46:38,216 epoch 143 - iter 240/300 - loss 0.03057702 - samples/sec: 8.13 - lr: 0.001563
|
255 |
+
2022-03-30 11:47:42,725 epoch 143 - iter 270/300 - loss 0.03075338 - samples/sec: 7.55 - lr: 0.001563
|
256 |
+
2022-03-30 11:48:51,739 epoch 143 - iter 300/300 - loss 0.03080276 - samples/sec: 7.09 - lr: 0.001563
|
257 |
+
2022-03-30 11:48:52,851 ----------------------------------------------------------------------------------------------------
|
258 |
+
2022-03-30 11:48:52,859 EPOCH 143 done: loss 0.0308 - lr 0.0015625
|
259 |
+
2022-03-30 11:49:28,228 DEV : loss 0.10188134014606476 - f1-score (micro avg) 0.9799
|
260 |
+
2022-03-30 11:49:28,244 BAD EPOCHS (no improvement): 4
|
261 |
+
2022-03-30 11:49:30,299 ----------------------------------------------------------------------------------------------------
|
262 |
+
2022-03-30 11:50:34,600 epoch 144 - iter 30/300 - loss 0.03093159 - samples/sec: 7.47 - lr: 0.000781
|
263 |
+
2022-03-30 11:51:31,933 epoch 144 - iter 60/300 - loss 0.03006009 - samples/sec: 8.62 - lr: 0.000781
|
264 |
+
2022-03-30 11:52:36,364 epoch 144 - iter 90/300 - loss 0.03038329 - samples/sec: 7.62 - lr: 0.000781
|
265 |
+
2022-03-30 11:53:39,169 epoch 144 - iter 120/300 - loss 0.03019530 - samples/sec: 7.79 - lr: 0.000781
|
266 |
+
2022-03-30 11:54:43,057 epoch 144 - iter 150/300 - loss 0.03019717 - samples/sec: 7.63 - lr: 0.000781
|
267 |
+
2022-03-30 11:55:44,578 epoch 144 - iter 180/300 - loss 0.02965347 - samples/sec: 7.95 - lr: 0.000781
|
268 |
+
2022-03-30 11:56:45,040 epoch 144 - iter 210/300 - loss 0.02932736 - samples/sec: 8.10 - lr: 0.000781
|
269 |
+
2022-03-30 11:57:47,657 epoch 144 - iter 240/300 - loss 0.02934119 - samples/sec: 7.79 - lr: 0.000781
|
270 |
+
2022-03-30 11:58:51,712 epoch 144 - iter 270/300 - loss 0.02864624 - samples/sec: 7.62 - lr: 0.000781
|
271 |
+
2022-03-30 11:59:54,247 epoch 144 - iter 300/300 - loss 0.02886004 - samples/sec: 7.84 - lr: 0.000781
|
272 |
+
2022-03-30 11:59:55,421 ----------------------------------------------------------------------------------------------------
|
273 |
+
2022-03-30 11:59:55,428 EPOCH 144 done: loss 0.0289 - lr 0.0007813
|
274 |
+
2022-03-30 12:00:31,510 DEV : loss 0.10193286091089249 - f1-score (micro avg) 0.9799
|
275 |
+
2022-03-30 12:00:31,529 BAD EPOCHS (no improvement): 1
|
276 |
+
2022-03-30 12:00:33,530 ----------------------------------------------------------------------------------------------------
|
277 |
+
2022-03-30 12:01:34,070 epoch 145 - iter 30/300 - loss 0.03054470 - samples/sec: 7.93 - lr: 0.000781
|
278 |
+
2022-03-30 12:02:37,077 epoch 145 - iter 60/300 - loss 0.02925298 - samples/sec: 7.75 - lr: 0.000781
|
279 |
+
2022-03-30 12:03:38,400 epoch 145 - iter 90/300 - loss 0.03073912 - samples/sec: 7.95 - lr: 0.000781
|
280 |
+
2022-03-30 12:04:39,348 epoch 145 - iter 120/300 - loss 0.03068456 - samples/sec: 8.00 - lr: 0.000781
|
281 |
+
2022-03-30 12:05:39,921 epoch 145 - iter 150/300 - loss 0.03031453 - samples/sec: 8.05 - lr: 0.000781
|
282 |
+
2022-03-30 12:06:41,034 epoch 145 - iter 180/300 - loss 0.02958307 - samples/sec: 7.98 - lr: 0.000781
|
283 |
+
2022-03-30 12:07:43,244 epoch 145 - iter 210/300 - loss 0.02954896 - samples/sec: 7.84 - lr: 0.000781
|
284 |
+
2022-03-30 12:08:42,598 epoch 145 - iter 240/300 - loss 0.03014911 - samples/sec: 8.22 - lr: 0.000781
|
285 |
+
2022-03-30 12:09:41,007 epoch 145 - iter 270/300 - loss 0.03031660 - samples/sec: 8.37 - lr: 0.000781
|
286 |
+
2022-03-30 12:10:40,278 epoch 145 - iter 300/300 - loss 0.03040646 - samples/sec: 8.25 - lr: 0.000781
|
287 |
+
2022-03-30 12:10:41,359 ----------------------------------------------------------------------------------------------------
|
288 |
+
2022-03-30 12:10:41,369 EPOCH 145 done: loss 0.0304 - lr 0.0007813
|
289 |
+
2022-03-30 12:11:16,524 DEV : loss 0.1020410880446434 - f1-score (micro avg) 0.9799
|
290 |
+
2022-03-30 12:11:16,537 BAD EPOCHS (no improvement): 2
|
291 |
+
2022-03-30 12:11:18,468 ----------------------------------------------------------------------------------------------------
|
292 |
+
2022-03-30 12:12:17,736 epoch 146 - iter 30/300 - loss 0.03388915 - samples/sec: 8.10 - lr: 0.000781
|
293 |
+
2022-03-30 12:13:16,442 epoch 146 - iter 60/300 - loss 0.03019310 - samples/sec: 8.31 - lr: 0.000781
|
294 |
+
2022-03-30 12:14:24,567 epoch 146 - iter 90/300 - loss 0.02995728 - samples/sec: 7.15 - lr: 0.000781
|
295 |
+
2022-03-30 12:15:20,711 epoch 146 - iter 120/300 - loss 0.03055739 - samples/sec: 8.70 - lr: 0.000781
|
296 |
+
2022-03-30 12:16:19,853 epoch 146 - iter 150/300 - loss 0.03013465 - samples/sec: 8.26 - lr: 0.000781
|
297 |
+
2022-03-30 12:17:19,384 epoch 146 - iter 180/300 - loss 0.03001331 - samples/sec: 8.20 - lr: 0.000781
|
298 |
+
2022-03-30 12:18:22,009 epoch 146 - iter 210/300 - loss 0.03033218 - samples/sec: 7.78 - lr: 0.000781
|
299 |
+
2022-03-30 12:19:18,662 epoch 146 - iter 240/300 - loss 0.03027508 - samples/sec: 8.62 - lr: 0.000781
|
300 |
+
2022-03-30 12:20:16,122 epoch 146 - iter 270/300 - loss 0.02978917 - samples/sec: 8.49 - lr: 0.000781
|
301 |
+
2022-03-30 12:21:17,243 epoch 146 - iter 300/300 - loss 0.02969052 - samples/sec: 7.98 - lr: 0.000781
|
302 |
+
2022-03-30 12:21:18,187 ----------------------------------------------------------------------------------------------------
|
303 |
+
2022-03-30 12:21:18,195 EPOCH 146 done: loss 0.0297 - lr 0.0007813
|
304 |
+
2022-03-30 12:21:52,094 DEV : loss 0.10200724005699158 - f1-score (micro avg) 0.9799
|
305 |
+
2022-03-30 12:21:52,110 BAD EPOCHS (no improvement): 3
|
306 |
+
2022-03-30 12:21:54,193 ----------------------------------------------------------------------------------------------------
|
307 |
+
2022-03-30 12:22:55,160 epoch 147 - iter 30/300 - loss 0.03017420 - samples/sec: 7.87 - lr: 0.000781
|
308 |
+
2022-03-30 12:23:50,715 epoch 147 - iter 60/300 - loss 0.03011640 - samples/sec: 8.82 - lr: 0.000781
|
309 |
+
2022-03-30 12:24:46,161 epoch 147 - iter 90/300 - loss 0.02814870 - samples/sec: 8.81 - lr: 0.000781
|
310 |
+
2022-03-30 12:25:49,615 epoch 147 - iter 120/300 - loss 0.02833966 - samples/sec: 7.68 - lr: 0.000781
|
311 |
+
2022-03-30 12:26:49,911 epoch 147 - iter 150/300 - loss 0.02799142 - samples/sec: 8.09 - lr: 0.000781
|
312 |
+
2022-03-30 12:27:51,843 epoch 147 - iter 180/300 - loss 0.02847355 - samples/sec: 7.88 - lr: 0.000781
|
313 |
+
2022-03-30 12:28:57,284 epoch 147 - iter 210/300 - loss 0.02890269 - samples/sec: 7.45 - lr: 0.000781
|
314 |
+
2022-03-30 12:29:53,822 epoch 147 - iter 240/300 - loss 0.02913940 - samples/sec: 8.64 - lr: 0.000781
|
315 |
+
2022-03-30 12:30:51,413 epoch 147 - iter 270/300 - loss 0.02966032 - samples/sec: 8.48 - lr: 0.000781
|
316 |
+
2022-03-30 12:31:48,559 epoch 147 - iter 300/300 - loss 0.03015249 - samples/sec: 8.57 - lr: 0.000781
|
317 |
+
2022-03-30 12:31:49,495 ----------------------------------------------------------------------------------------------------
|
318 |
+
2022-03-30 12:31:49,502 EPOCH 147 done: loss 0.0302 - lr 0.0007813
|
319 |
+
2022-03-30 12:32:24,767 DEV : loss 0.10197500139474869 - f1-score (micro avg) 0.9799
|
320 |
+
2022-03-30 12:32:24,780 BAD EPOCHS (no improvement): 4
|
321 |
+
2022-03-30 12:32:27,012 ----------------------------------------------------------------------------------------------------
|
322 |
+
2022-03-30 12:33:24,651 epoch 148 - iter 30/300 - loss 0.02956941 - samples/sec: 8.33 - lr: 0.000391
|
323 |
+
2022-03-30 12:34:22,801 epoch 148 - iter 60/300 - loss 0.02827974 - samples/sec: 8.39 - lr: 0.000391
|
324 |
+
2022-03-30 12:35:19,846 epoch 148 - iter 90/300 - loss 0.02906290 - samples/sec: 8.56 - lr: 0.000391
|
325 |
+
2022-03-30 12:36:19,972 epoch 148 - iter 120/300 - loss 0.02973210 - samples/sec: 8.13 - lr: 0.000391
|
326 |
+
2022-03-30 12:37:20,722 epoch 148 - iter 150/300 - loss 0.03000164 - samples/sec: 8.11 - lr: 0.000391
|
327 |
+
2022-03-30 12:38:21,387 epoch 148 - iter 180/300 - loss 0.03013482 - samples/sec: 8.06 - lr: 0.000391
|
328 |
+
2022-03-30 12:39:29,775 epoch 148 - iter 210/300 - loss 0.02972903 - samples/sec: 7.15 - lr: 0.000391
|
329 |
+
2022-03-30 12:40:30,565 epoch 148 - iter 240/300 - loss 0.02919740 - samples/sec: 8.04 - lr: 0.000391
|
330 |
+
2022-03-30 12:41:40,602 epoch 148 - iter 270/300 - loss 0.02951950 - samples/sec: 6.97 - lr: 0.000391
|
331 |
+
2022-03-30 12:42:43,341 epoch 148 - iter 300/300 - loss 0.02951220 - samples/sec: 7.80 - lr: 0.000391
|
332 |
+
2022-03-30 12:42:44,430 ----------------------------------------------------------------------------------------------------
|
333 |
+
2022-03-30 12:42:44,439 EPOCH 148 done: loss 0.0295 - lr 0.0003906
|
334 |
+
2022-03-30 12:43:19,991 DEV : loss 0.1020146831870079 - f1-score (micro avg) 0.9799
|
335 |
+
2022-03-30 12:43:20,004 BAD EPOCHS (no improvement): 1
|
336 |
+
2022-03-30 12:43:22,042 ----------------------------------------------------------------------------------------------------
|
337 |
+
2022-03-30 12:44:17,873 epoch 149 - iter 30/300 - loss 0.03481397 - samples/sec: 8.60 - lr: 0.000391
|
338 |
+
2022-03-30 12:45:25,311 epoch 149 - iter 60/300 - loss 0.02951263 - samples/sec: 7.22 - lr: 0.000391
|
339 |
+
2022-03-30 12:46:28,256 epoch 149 - iter 90/300 - loss 0.03115284 - samples/sec: 7.76 - lr: 0.000391
|
340 |
+
2022-03-30 12:47:26,637 epoch 149 - iter 120/300 - loss 0.03026986 - samples/sec: 8.36 - lr: 0.000391
|
341 |
+
2022-03-30 12:48:27,732 epoch 149 - iter 150/300 - loss 0.02926616 - samples/sec: 7.99 - lr: 0.000391
|
342 |
+
2022-03-30 12:49:28,983 epoch 149 - iter 180/300 - loss 0.02904276 - samples/sec: 7.96 - lr: 0.000391
|
343 |
+
2022-03-30 12:50:37,366 epoch 149 - iter 210/300 - loss 0.02906074 - samples/sec: 7.12 - lr: 0.000391
|
344 |
+
2022-03-30 12:51:40,166 epoch 149 - iter 240/300 - loss 0.02931871 - samples/sec: 7.76 - lr: 0.000391
|
345 |
+
2022-03-30 12:52:44,553 epoch 149 - iter 270/300 - loss 0.02949797 - samples/sec: 7.60 - lr: 0.000391
|
346 |
+
2022-03-30 12:53:43,279 epoch 149 - iter 300/300 - loss 0.02966499 - samples/sec: 8.33 - lr: 0.000391
|
347 |
+
2022-03-30 12:53:44,358 ----------------------------------------------------------------------------------------------------
|
348 |
+
2022-03-30 12:53:44,368 EPOCH 149 done: loss 0.0297 - lr 0.0003906
|
349 |
+
2022-03-30 12:54:20,685 DEV : loss 0.10201691836118698 - f1-score (micro avg) 0.9799
|
350 |
+
2022-03-30 12:54:20,700 BAD EPOCHS (no improvement): 2
|
351 |
+
2022-03-30 12:54:22,923 ----------------------------------------------------------------------------------------------------
|
352 |
+
2022-03-30 12:55:26,769 epoch 150 - iter 30/300 - loss 0.02921641 - samples/sec: 7.52 - lr: 0.000391
|
353 |
+
2022-03-30 12:56:30,124 epoch 150 - iter 60/300 - loss 0.03017024 - samples/sec: 7.70 - lr: 0.000391
|
354 |
+
2022-03-30 12:57:37,174 epoch 150 - iter 90/300 - loss 0.02976986 - samples/sec: 7.29 - lr: 0.000391
|
355 |
+
2022-03-30 12:58:37,123 epoch 150 - iter 120/300 - loss 0.02963135 - samples/sec: 8.13 - lr: 0.000391
|
356 |
+
2022-03-30 12:59:34,900 epoch 150 - iter 150/300 - loss 0.02946543 - samples/sec: 8.46 - lr: 0.000391
|
357 |
+
2022-03-30 13:00:38,262 epoch 150 - iter 180/300 - loss 0.02918791 - samples/sec: 7.72 - lr: 0.000391
|
358 |
+
2022-03-30 13:01:36,418 epoch 150 - iter 210/300 - loss 0.02878193 - samples/sec: 8.39 - lr: 0.000391
|
359 |
+
2022-03-30 13:02:37,434 epoch 150 - iter 240/300 - loss 0.02897084 - samples/sec: 8.00 - lr: 0.000391
|
360 |
+
2022-03-30 13:03:38,183 epoch 150 - iter 270/300 - loss 0.02925266 - samples/sec: 8.03 - lr: 0.000391
|
361 |
+
2022-03-30 13:04:38,412 epoch 150 - iter 300/300 - loss 0.02904189 - samples/sec: 8.09 - lr: 0.000391
|
362 |
+
2022-03-30 13:04:39,315 ----------------------------------------------------------------------------------------------------
|
363 |
+
2022-03-30 13:04:39,324 EPOCH 150 done: loss 0.0290 - lr 0.0003906
|
364 |
+
2022-03-30 13:05:16,273 DEV : loss 0.10202094167470932 - f1-score (micro avg) 0.9799
|
365 |
+
2022-03-30 13:05:16,286 BAD EPOCHS (no improvement): 3
|
366 |
+
2022-03-30 13:05:18,224 ----------------------------------------------------------------------------------------------------
|
367 |
+
2022-03-30 13:06:20,779 epoch 151 - iter 30/300 - loss 0.02923949 - samples/sec: 7.68 - lr: 0.000391
|
368 |
+
2022-03-30 13:07:20,679 epoch 151 - iter 60/300 - loss 0.02844942 - samples/sec: 8.15 - lr: 0.000391
|
369 |
+
2022-03-30 13:08:15,320 epoch 151 - iter 90/300 - loss 0.02703875 - samples/sec: 8.94 - lr: 0.000391
|
370 |
+
2022-03-30 13:09:18,118 epoch 151 - iter 120/300 - loss 0.02737682 - samples/sec: 7.77 - lr: 0.000391
|
371 |
+
2022-03-30 13:10:22,493 epoch 151 - iter 150/300 - loss 0.02725408 - samples/sec: 7.57 - lr: 0.000391
|
372 |
+
2022-03-30 13:11:18,619 epoch 151 - iter 180/300 - loss 0.02774154 - samples/sec: 8.70 - lr: 0.000391
|
373 |
+
2022-03-30 13:12:16,135 epoch 151 - iter 210/300 - loss 0.02828949 - samples/sec: 8.48 - lr: 0.000391
|
374 |
+
2022-03-30 13:13:20,885 epoch 151 - iter 240/300 - loss 0.02853759 - samples/sec: 7.53 - lr: 0.000391
|
375 |
+
2022-03-30 13:14:20,337 epoch 151 - iter 270/300 - loss 0.02806431 - samples/sec: 8.21 - lr: 0.000391
|
376 |
+
2022-03-30 13:15:18,141 epoch 151 - iter 300/300 - loss 0.02838301 - samples/sec: 8.44 - lr: 0.000391
|
377 |
+
2022-03-30 13:15:19,109 ----------------------------------------------------------------------------------------------------
|
378 |
+
2022-03-30 13:15:19,118 EPOCH 151 done: loss 0.0284 - lr 0.0003906
|
379 |
+
2022-03-30 13:15:55,729 DEV : loss 0.10201210528612137 - f1-score (micro avg) 0.98
|
380 |
+
2022-03-30 13:15:55,743 BAD EPOCHS (no improvement): 4
|
381 |
+
2022-03-30 13:15:57,761 ----------------------------------------------------------------------------------------------------
|
382 |
+
2022-03-30 13:16:51,190 epoch 152 - iter 30/300 - loss 0.03240213 - samples/sec: 8.99 - lr: 0.000195
|
383 |
+
2022-03-30 13:17:52,520 epoch 152 - iter 60/300 - loss 0.02845009 - samples/sec: 7.94 - lr: 0.000195
|
384 |
+
2022-03-30 13:18:51,431 epoch 152 - iter 90/300 - loss 0.02996368 - samples/sec: 8.27 - lr: 0.000195
|
385 |
+
2022-03-30 13:19:51,886 epoch 152 - iter 120/300 - loss 0.02991149 - samples/sec: 8.06 - lr: 0.000195
|
386 |
+
2022-03-30 13:20:55,106 epoch 152 - iter 150/300 - loss 0.02958199 - samples/sec: 7.70 - lr: 0.000195
|
387 |
+
2022-03-30 13:21:53,509 epoch 152 - iter 180/300 - loss 0.02972192 - samples/sec: 8.35 - lr: 0.000195
|
388 |
+
2022-03-30 13:22:52,257 epoch 152 - iter 210/300 - loss 0.03019008 - samples/sec: 8.30 - lr: 0.000195
|
389 |
+
2022-03-30 13:23:50,768 epoch 152 - iter 240/300 - loss 0.03007176 - samples/sec: 8.33 - lr: 0.000195
|
390 |
+
2022-03-30 13:24:53,673 epoch 152 - iter 270/300 - loss 0.03025321 - samples/sec: 7.81 - lr: 0.000195
|
391 |
+
2022-03-30 13:25:54,892 epoch 152 - iter 300/300 - loss 0.03032258 - samples/sec: 7.99 - lr: 0.000195
|
392 |
+
2022-03-30 13:25:56,061 ----------------------------------------------------------------------------------------------------
|
393 |
+
2022-03-30 13:25:56,072 EPOCH 152 done: loss 0.0303 - lr 0.0001953
|
394 |
+
2022-03-30 13:26:34,122 DEV : loss 0.10201038420200348 - f1-score (micro avg) 0.98
|
395 |
+
2022-03-30 13:26:34,143 BAD EPOCHS (no improvement): 1
|
396 |
+
2022-03-30 13:26:36,389 ----------------------------------------------------------------------------------------------------
|
397 |
+
2022-03-30 13:27:36,309 epoch 153 - iter 30/300 - loss 0.02570798 - samples/sec: 8.01 - lr: 0.000195
|
398 |
+
2022-03-30 13:28:42,666 epoch 153 - iter 60/300 - loss 0.02826468 - samples/sec: 7.36 - lr: 0.000195
|
399 |
+
2022-03-30 13:29:47,512 epoch 153 - iter 90/300 - loss 0.02966814 - samples/sec: 7.52 - lr: 0.000195
|
400 |
+
2022-03-30 13:30:51,568 epoch 153 - iter 120/300 - loss 0.02962908 - samples/sec: 7.60 - lr: 0.000195
|
401 |
+
2022-03-30 13:31:50,204 epoch 153 - iter 150/300 - loss 0.02963920 - samples/sec: 8.33 - lr: 0.000195
|
402 |
+
2022-03-30 13:32:46,591 epoch 153 - iter 180/300 - loss 0.03019015 - samples/sec: 8.67 - lr: 0.000195
|
403 |
+
2022-03-30 13:33:41,403 epoch 153 - iter 210/300 - loss 0.03069690 - samples/sec: 8.90 - lr: 0.000195
|
404 |
+
2022-03-30 13:34:41,987 epoch 153 - iter 240/300 - loss 0.03112855 - samples/sec: 8.06 - lr: 0.000195
|
405 |
+
2022-03-30 13:35:42,286 epoch 153 - iter 270/300 - loss 0.03128193 - samples/sec: 8.09 - lr: 0.000195
|
406 |
+
2022-03-30 13:36:42,717 epoch 153 - iter 300/300 - loss 0.03096604 - samples/sec: 8.07 - lr: 0.000195
|
407 |
+
2022-03-30 13:36:43,706 ----------------------------------------------------------------------------------------------------
|
408 |
+
2022-03-30 13:36:43,716 EPOCH 153 done: loss 0.0310 - lr 0.0001953
|
409 |
+
2022-03-30 13:37:19,205 DEV : loss 0.10202408581972122 - f1-score (micro avg) 0.98
|
410 |
+
2022-03-30 13:37:19,219 BAD EPOCHS (no improvement): 2
|
411 |
+
2022-03-30 13:37:21,203 ----------------------------------------------------------------------------------------------------
|
412 |
+
2022-03-30 13:38:20,787 epoch 154 - iter 30/300 - loss 0.03084118 - samples/sec: 8.06 - lr: 0.000195
|
413 |
+
2022-03-30 13:39:23,198 epoch 154 - iter 60/300 - loss 0.03093184 - samples/sec: 7.82 - lr: 0.000195
|
414 |
+
2022-03-30 13:40:23,736 epoch 154 - iter 90/300 - loss 0.03080735 - samples/sec: 8.05 - lr: 0.000195
|
415 |
+
2022-03-30 13:41:23,844 epoch 154 - iter 120/300 - loss 0.03091830 - samples/sec: 8.12 - lr: 0.000195
|
416 |
+
2022-03-30 13:42:24,937 epoch 154 - iter 150/300 - loss 0.03055376 - samples/sec: 7.99 - lr: 0.000195
|
417 |
+
2022-03-30 13:43:28,630 epoch 154 - iter 180/300 - loss 0.03022854 - samples/sec: 7.65 - lr: 0.000195
|
418 |
+
2022-03-30 13:44:24,721 epoch 154 - iter 210/300 - loss 0.03042921 - samples/sec: 8.70 - lr: 0.000195
|
419 |
+
2022-03-30 13:45:22,613 epoch 154 - iter 240/300 - loss 0.03014891 - samples/sec: 8.44 - lr: 0.000195
|
420 |
+
2022-03-30 13:46:21,702 epoch 154 - iter 270/300 - loss 0.03032649 - samples/sec: 8.26 - lr: 0.000195
|
421 |
+
2022-03-30 13:47:19,740 epoch 154 - iter 300/300 - loss 0.03013623 - samples/sec: 8.41 - lr: 0.000195
|
422 |
+
2022-03-30 13:47:20,775 ----------------------------------------------------------------------------------------------------
|
423 |
+
2022-03-30 13:47:20,785 EPOCH 154 done: loss 0.0301 - lr 0.0001953
|
424 |
+
2022-03-30 13:47:54,972 DEV : loss 0.10201508551836014 - f1-score (micro avg) 0.98
|
425 |
+
2022-03-30 13:47:54,985 BAD EPOCHS (no improvement): 3
|
426 |
+
2022-03-30 13:47:57,280 ----------------------------------------------------------------------------------------------------
|
427 |
+
2022-03-30 13:48:53,744 epoch 155 - iter 30/300 - loss 0.02969199 - samples/sec: 8.50 - lr: 0.000195
|
428 |
+
2022-03-30 13:50:00,140 epoch 155 - iter 60/300 - loss 0.02952413 - samples/sec: 7.34 - lr: 0.000195
|
429 |
+
2022-03-30 13:50:57,335 epoch 155 - iter 90/300 - loss 0.02895664 - samples/sec: 8.55 - lr: 0.000195
|
430 |
+
2022-03-30 13:52:00,770 epoch 155 - iter 120/300 - loss 0.02939865 - samples/sec: 7.70 - lr: 0.000195
|
431 |
+
2022-03-30 13:52:55,754 epoch 155 - iter 150/300 - loss 0.02914908 - samples/sec: 8.89 - lr: 0.000195
|
432 |
+
2022-03-30 13:53:58,653 epoch 155 - iter 180/300 - loss 0.02964743 - samples/sec: 7.75 - lr: 0.000195
|
433 |
+
2022-03-30 13:54:58,348 epoch 155 - iter 210/300 - loss 0.02989400 - samples/sec: 8.17 - lr: 0.000195
|
434 |
+
2022-03-30 13:55:57,923 epoch 155 - iter 240/300 - loss 0.03024802 - samples/sec: 8.19 - lr: 0.000195
|
435 |
+
2022-03-30 13:56:54,633 epoch 155 - iter 270/300 - loss 0.03030596 - samples/sec: 8.61 - lr: 0.000195
|
436 |
+
2022-03-30 13:57:51,732 epoch 155 - iter 300/300 - loss 0.03018545 - samples/sec: 8.56 - lr: 0.000195
|
437 |
+
2022-03-30 13:57:52,773 ----------------------------------------------------------------------------------------------------
|
438 |
+
2022-03-30 13:57:52,781 EPOCH 155 done: loss 0.0302 - lr 0.0001953
|
439 |
+
2022-03-30 13:58:26,906 DEV : loss 0.10200126469135284 - f1-score (micro avg) 0.98
|
440 |
+
2022-03-30 13:58:26,923 BAD EPOCHS (no improvement): 4
|
441 |
+
2022-03-30 13:58:29,111 ----------------------------------------------------------------------------------------------------
|
442 |
+
2022-03-30 13:58:29,114 ----------------------------------------------------------------------------------------------------
|
443 |
+
2022-03-30 13:58:29,118 learning rate too small - quitting training!
|
444 |
+
2022-03-30 13:58:29,132 ----------------------------------------------------------------------------------------------------
|
445 |
+
2022-03-30 13:58:40,931 ----------------------------------------------------------------------------------------------------
|
446 |
+
2022-03-30 13:58:40,950 loading file /content/drive/MyDrive/project/data/upos/model/best-model.pt
|
447 |
+
2022-03-30 14:07:05,835 0.977 0.977 0.977 0.977
|
448 |
+
2022-03-30 14:07:05,843
|
449 |
Results:
|
450 |
+
- F-score (micro) 0.977
|
451 |
+
- F-score (macro) 0.9456
|
452 |
+
- Accuracy 0.977
|
453 |
|
454 |
By class:
|
455 |
precision recall f1-score support
|
456 |
|
457 |
+
NOUN 0.9768 0.9850 0.9809 6420
|
458 |
+
ADP 0.9947 0.9916 0.9932 1909
|
459 |
+
ADJ 0.9336 0.9128 0.9231 1525
|
460 |
PUNCT 1.0000 1.0000 1.0000 1365
|
461 |
+
VERB 0.9831 0.9693 0.9762 1141
|
462 |
+
CCONJ 0.9912 0.9924 0.9918 794
|
463 |
+
AUX 0.9604 0.9780 0.9691 546
|
464 |
+
PRON 0.9751 0.9845 0.9798 517
|
465 |
+
SCONJ 0.9777 0.9757 0.9767 494
|
466 |
+
NUM 0.9948 1.0000 0.9974 385
|
467 |
+
ADV 0.9368 0.9006 0.9183 362
|
468 |
+
DET 0.9742 0.9711 0.9726 311
|
469 |
PART 0.9916 1.0000 0.9958 237
|
470 |
+
INTJ 0.8889 0.8000 0.8421 10
|
471 |
+
X 0.7143 0.6250 0.6667 8
|
472 |
|
473 |
+
micro avg 0.9770 0.9770 0.9770 16024
|
474 |
+
macro avg 0.9529 0.9391 0.9456 16024
|
475 |
+
weighted avg 0.9769 0.9770 0.9769 16024
|
476 |
+
samples avg 0.9770 0.9770 0.9770 16024
|
477 |
|
478 |
+
2022-03-30 14:07:05,846 ----------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|