--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - stable-diffusion-xl - stable-diffusion-xl-diffusers - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers-training - diffusers inference: true --- # Text-to-image finetuning - haorandai/Nov_Clean_Bicycle_Orange_5samples_with5constraints This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **haorandai/Nov_Clean_Bicycle_Orange_5samples_with5constraints** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: None: ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("haorandai/Nov_Clean_Bicycle_Orange_5samples_with5constraints", torch_dtype=torch.float16) prompt = "None" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 167 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 224 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]