happycoding
commited on
Commit
·
1a65d46
1
Parent(s):
6cfa372
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.67 +/- 0.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1fe7d978651b0ca2d4cb05f3fac988ff468ff7d28e1c152e6a8b5a080a5d6ba
|
3 |
+
size 108131
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9247d849d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f9247d85330>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674037542811313153,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsMbRPm+3zjnrqA0/sMbRPm+3zjnrqA0/sMbRPm+3zjnrqA0/sMbRPm+3zjnrqA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAitcvP18cEz7/NlO/9n6Qv5+qAr7RDdm/FOczP94Qmj/t+l292kmRP1NymD0cik0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACwxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7ywxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7ywxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7ywxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7yUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[4.0971899e-01 3.9428051e-04 5.5335873e-01]\n [4.0971899e-01 3.9428051e-04 5.5335873e-01]\n [4.0971899e-01 3.9428051e-04 5.5335873e-01]\n [4.0971899e-01 3.9428051e-04 5.5335873e-01]]",
|
60 |
+
"desired_goal": "[[ 0.6868826 0.14366291 -0.8250579 ]\n [-1.1288745 -0.127604 -1.6957341 ]\n [ 0.7027447 1.2036397 -0.05419438]\n [ 1.1350663 0.07443681 0.80288863]]",
|
61 |
+
"observation": "[[ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]\n [ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]\n [ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]\n [ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxlq0PLljTb04Yo8+8O9Svefgx70/Gms+x7chPWp9O721bX8+1nD4O6gSBL5K03M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.02201594 -0.05014393 0.28004622]\n [-0.05149835 -0.09759694 0.22959231]\n [ 0.0394819 -0.0457739 0.24944194]\n [ 0.00758181 -0.12897742 0.23811069]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMV7zqs7KCsCUhpRSlIwBbJRLMowBdJRHQKO2Rd2PkrB1fZQoaAZoCWgPQwgz4Cwly2kKwJSGlFKUaBVLMmgWR0CjtgigCfYjdX2UKGgGaAloD0MIlX8tr1z/EcCUhpRSlGgVSzJoFkdAo7XHlhgE2nV9lChoBmgJaA9DCD22ZcBZag3AlIaUUpRoFUsyaBZHQKO1jdoFmnR1fZQoaAZoCWgPQwggQ8cOKjEPwJSGlFKUaBVLMmgWR0CjtyRJEpiJdX2UKGgGaAloD0MI2LlpM04jBMCUhpRSlGgVSzJoFkdAo7bnT/hl2HV9lChoBmgJaA9DCGuduByvAAXAlIaUUpRoFUsyaBZHQKO2pj4pMHt1fZQoaAZoCWgPQwg+P4wQHo0GwJSGlFKUaBVLMmgWR0CjtmyNOuaGdX2UKGgGaAloD0MI6N1YUBhUB8CUhpRSlGgVSzJoFkdAo7f/nU2DQXV9lChoBmgJaA9DCGrf3F89zgvAlIaUUpRoFUsyaBZHQKO3wrH2h7F1fZQoaAZoCWgPQwg0+PvFbIkUwJSGlFKUaBVLMmgWR0Cjt4GRNh3JdX2UKGgGaAloD0MIMepae59aEsCUhpRSlGgVSzJoFkdAo7dH6KtPpXV9lChoBmgJaA9DCGspIO1/gAfAlIaUUpRoFUsyaBZHQKO432/zreJ1fZQoaAZoCWgPQwj/s+bHX1oJwJSGlFKUaBVLMmgWR0CjuKJHZsbedX2UKGgGaAloD0MIfhtivOaVCsCUhpRSlGgVSzJoFkdAo7hhPKuB+XV9lChoBmgJaA9DCFExzt+EIg7AlIaUUpRoFUsyaBZHQKO4J5Lytmt1fZQoaAZoCWgPQwg3pics8WAHwJSGlFKUaBVLMmgWR0Cjubj4YaYNdX2UKGgGaAloD0MItwvNdRr5EcCUhpRSlGgVSzJoFkdAo7l70Fr2x3V9lChoBmgJaA9DCObrMvyn+wfAlIaUUpRoFUsyaBZHQKO5OrT6SDB1fZQoaAZoCWgPQwgKgzKNJlcUwJSGlFKUaBVLMmgWR0CjuQEIomXxdX2UKGgGaAloD0MImzxlNV2vDcCUhpRSlGgVSzJoFkdAo7qaqABkqnV9lChoBmgJaA9DCJhMFYxKShfAlIaUUpRoFUsyaBZHQKO6XdqtYCB1fZQoaAZoCWgPQwiYMJqV7YMPwJSGlFKUaBVLMmgWR0CjuhzR6WxAdX2UKGgGaAloD0MIn8vUJHhTEcCUhpRSlGgVSzJoFkdAo7njN8ma6XV9lChoBmgJaA9DCJje/lw0tBXAlIaUUpRoFUsyaBZHQKO7f4Vymyh1fZQoaAZoCWgPQwjA7QkS260QwJSGlFKUaBVLMmgWR0Cju0JZGKAKdX2UKGgGaAloD0MIDMwKRbofC8CUhpRSlGgVSzJoFkdAo7sBTKkl/3V9lChoBmgJaA9DCONPVDasyQ7AlIaUUpRoFUsyaBZHQKO6x6PbO/t1fZQoaAZoCWgPQwjNP/omTXMUwJSGlFKUaBVLMmgWR0CjvFz1K5CodX2UKGgGaAloD0MIkxywq8nTCMCUhpRSlGgVSzJoFkdAo7wft8eCCnV9lChoBmgJaA9DCAH8U6pE6RbAlIaUUpRoFUsyaBZHQKO73qFh5Pd1fZQoaAZoCWgPQwjWUkDa/wAUwJSGlFKUaBVLMmgWR0Cju6Tzd1uBdX2UKGgGaAloD0MI9pfdk4dlDMCUhpRSlGgVSzJoFkdAo701VghKUXV9lChoBmgJaA9DCAPMfAc/EQvAlIaUUpRoFUsyaBZHQKO8+KtxMnJ1fZQoaAZoCWgPQwiK6NfWTz8TwJSGlFKUaBVLMmgWR0CjvLfZuhsZdX2UKGgGaAloD0MIVOV7RiKEEsCUhpRSlGgVSzJoFkdAo7x+Xu3MIXV9lChoBmgJaA9DCLx4P26/PBPAlIaUUpRoFUsyaBZHQKO+ECJXQt11fZQoaAZoCWgPQwgukQvO4E8PwJSGlFKUaBVLMmgWR0CjvdLzPKMedX2UKGgGaAloD0MI3zKny2LCD8CUhpRSlGgVSzJoFkdAo72R7LMcInV9lChoBmgJaA9DCEm70cd8AAzAlIaUUpRoFUsyaBZHQKO9WC+UQkJ1fZQoaAZoCWgPQwhZiuQrgRQIwJSGlFKUaBVLMmgWR0CjvunSnccmdX2UKGgGaAloD0MI5WTiVkGMDcCUhpRSlGgVSzJoFkdAo76so4MnZ3V9lChoBmgJaA9DCHHMsieBbQzAlIaUUpRoFUsyaBZHQKO+a5BkZrJ1fZQoaAZoCWgPQwiM22gAb4ETwJSGlFKUaBVLMmgWR0CjvjHV5KODdX2UKGgGaAloD0MItFcfD33XBsCUhpRSlGgVSzJoFkdAo7/KYG+sYHV9lChoBmgJaA9DCAR0X85sdw7AlIaUUpRoFUsyaBZHQKO/jch1Tzd1fZQoaAZoCWgPQwhb6bXZWIkHwJSGlFKUaBVLMmgWR0Cjv0zV2A5JdX2UKGgGaAloD0MI1y/YDds2DcCUhpRSlGgVSzJoFkdAo78TKxLTQXV9lChoBmgJaA9DCJgW9UnuUA7AlIaUUpRoFUsyaBZHQKPAprJr+Hd1fZQoaAZoCWgPQwgRxeQNMNMMwJSGlFKUaBVLMmgWR0CjwGmfPHDKdX2UKGgGaAloD0MIWFNZFHbRDsCUhpRSlGgVSzJoFkdAo8AolMRHw3V9lChoBmgJaA9DCOHSMecZGwnAlIaUUpRoFUsyaBZHQKO/7tx+8Xh1fZQoaAZoCWgPQwj/5sWJr7YLwJSGlFKUaBVLMmgWR0CjwXv3ai9JdX2UKGgGaAloD0MIBWnGoumsDMCUhpRSlGgVSzJoFkdAo8E+ykbgj3V9lChoBmgJaA9DCIxppnudlA7AlIaUUpRoFUsyaBZHQKPA/bVSXMR1fZQoaAZoCWgPQwjfUs4Xe48KwJSGlFKUaBVLMmgWR0CjwMP863iJdX2UKGgGaAloD0MIPnsuU5NgEcCUhpRSlGgVSzJoFkdAo8JY2dd3S3V9lChoBmgJaA9DCGk6OxkcpQnAlIaUUpRoFUsyaBZHQKPCG5/b0vp1fZQoaAZoCWgPQwiBQ6hSs4cOwJSGlFKUaBVLMmgWR0Cjwdp/oaDPdX2UKGgGaAloD0MItcU1PpNtG8CUhpRSlGgVSzJoFkdAo8GgysS00HV9lChoBmgJaA9DCKkUOxqH+g/AlIaUUpRoFUsyaBZHQKPDNb9If8x1fZQoaAZoCWgPQwjUt8zpsjgMwJSGlFKUaBVLMmgWR0Cjwvk5ZKWcdX2UKGgGaAloD0MIeQd40sJlD8CUhpRSlGgVSzJoFkdAo8K4Qg9vCXV9lChoBmgJaA9DCNbgfVUuRBPAlIaUUpRoFUsyaBZHQKPCfo9LYf51fZQoaAZoCWgPQwjds67RcmANwJSGlFKUaBVLMmgWR0CjxBc8TzundX2UKGgGaAloD0MIPBQF+kSeCcCUhpRSlGgVSzJoFkdAo8PaBXjlxXV9lChoBmgJaA9DCBcOhGQB8wvAlIaUUpRoFUsyaBZHQKPDmN83Mpx1fZQoaAZoCWgPQwhjfQOTGwUTwJSGlFKUaBVLMmgWR0Cjw18dxQzldX2UKGgGaAloD0MIpyVWRiMfCMCUhpRSlGgVSzJoFkdAo8TyeoUBXHV9lChoBmgJaA9DCOwvuycP6wjAlIaUUpRoFUsyaBZHQKPEtWFvhqF1fZQoaAZoCWgPQwhJnBVRE/0VwJSGlFKUaBVLMmgWR0CjxHRhttQ9dX2UKGgGaAloD0MIDHOCNjkcBcCUhpRSlGgVSzJoFkdAo8Q6sr/bTXV9lChoBmgJaA9DCKBP5EnSFQTAlIaUUpRoFUsyaBZHQKPFzWcSXdF1fZQoaAZoCWgPQwhB9Q8iGZIJwJSGlFKUaBVLMmgWR0CjxZBnSOR1dX2UKGgGaAloD0MIiNUfYRhwBcCUhpRSlGgVSzJoFkdAo8VPUDuBtnV9lChoBmgJaA9DCG+Cb5o+uwPAlIaUUpRoFUsyaBZHQKPFFaEBbOh1fZQoaAZoCWgPQwh1sWmlECgRwJSGlFKUaBVLMmgWR0CjxrQfhddFdX2UKGgGaAloD0MImxw+6UTCD8CUhpRSlGgVSzJoFkdAo8Z29nK4hHV9lChoBmgJaA9DCNsWZTbI5AjAlIaUUpRoFUsyaBZHQKPGNdSl3yJ1fZQoaAZoCWgPQwhKYd7jTAMRwJSGlFKUaBVLMmgWR0CjxfwswtaqdX2UKGgGaAloD0MIWP58W7CUCcCUhpRSlGgVSzJoFkdAo8ePtpmEoXV9lChoBmgJaA9DCGdl+5C3XAnAlIaUUpRoFUsyaBZHQKPHUoy9EkV1fZQoaAZoCWgPQwhM4xdeSRIGwJSGlFKUaBVLMmgWR0CjxxGQ8wHrdX2UKGgGaAloD0MID9WUZB1uDcCUhpRSlGgVSzJoFkdAo8bX6oESunV9lChoBmgJaA9DCAOUhhqF5AbAlIaUUpRoFUsyaBZHQKPIc4TbnHN1fZQoaAZoCWgPQwiT407pYB0GwJSGlFKUaBVLMmgWR0CjyDZS3soldX2UKGgGaAloD0MIYrt7gO5rDMCUhpRSlGgVSzJoFkdAo8f1Muez2XV9lChoBmgJaA9DCE94CU59AA3AlIaUUpRoFUsyaBZHQKPHu79Q40d1fZQoaAZoCWgPQwi7D0BqEycTwJSGlFKUaBVLMmgWR0CjyVDMvAXVdX2UKGgGaAloD0MIF5tWCoG8CsCUhpRSlGgVSzJoFkdAo8kTx5LRKHV9lChoBmgJaA9DCPCmW3aI/wfAlIaUUpRoFUsyaBZHQKPI0sV+I/J1fZQoaAZoCWgPQwi8dJMYBDYYwJSGlFKUaBVLMmgWR0CjyJkit7rtdX2UKGgGaAloD0MI3GJ+bmjKCcCUhpRSlGgVSzJoFkdAo8opUrCm/HV9lChoBmgJaA9DCM1XycfuIgrAlIaUUpRoFUsyaBZHQKPJ7D3M6il1fZQoaAZoCWgPQwgAAtaqXdMLwJSGlFKUaBVLMmgWR0CjyaswDeTFdX2UKGgGaAloD0MIWwacpWQZCsCUhpRSlGgVSzJoFkdAo8lxgeA/cHV9lChoBmgJaA9DCLUX0XZM3QbAlIaUUpRoFUsyaBZHQKPLCD9wWFh1fZQoaAZoCWgPQwjYYrfPKjMMwJSGlFKUaBVLMmgWR0CjysseXAuadX2UKGgGaAloD0MIm3PwTGhSCcCUhpRSlGgVSzJoFkdAo8qKGFi8WnV9lChoBmgJaA9DCFcju9IyMhDAlIaUUpRoFUsyaBZHQKPKUIHC4z91ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7bd489bda04f5184e0d723483b6e64b90d22e96fa71cc756376b9a3269da276
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:675c642015a88aae95a4a323d50d16ac2c87f8970cf789dcd40131752ddb83be
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9247d849d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9247d85330>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674037542811313153, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsMbRPm+3zjnrqA0/sMbRPm+3zjnrqA0/sMbRPm+3zjnrqA0/sMbRPm+3zjnrqA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAitcvP18cEz7/NlO/9n6Qv5+qAr7RDdm/FOczP94Qmj/t+l292kmRP1NymD0cik0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACwxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7ywxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7ywxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7ywxtE+b7fOOeuoDT+5cNY7Gf2QujAtQ7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[4.0971899e-01 3.9428051e-04 5.5335873e-01]\n [4.0971899e-01 3.9428051e-04 5.5335873e-01]\n [4.0971899e-01 3.9428051e-04 5.5335873e-01]\n [4.0971899e-01 3.9428051e-04 5.5335873e-01]]", "desired_goal": "[[ 0.6868826 0.14366291 -0.8250579 ]\n [-1.1288745 -0.127604 -1.6957341 ]\n [ 0.7027447 1.2036397 -0.05419438]\n [ 1.1350663 0.07443681 0.80288863]]", "observation": "[[ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]\n [ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]\n [ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]\n [ 4.0971899e-01 3.9428051e-04 5.5335873e-01 6.5441993e-03\n -1.1061757e-03 -1.1912629e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxlq0PLljTb04Yo8+8O9Svefgx70/Gms+x7chPWp9O721bX8+1nD4O6gSBL5K03M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02201594 -0.05014393 0.28004622]\n [-0.05149835 -0.09759694 0.22959231]\n [ 0.0394819 -0.0457739 0.24944194]\n [ 0.00758181 -0.12897742 0.23811069]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMV7zqs7KCsCUhpRSlIwBbJRLMowBdJRHQKO2Rd2PkrB1fZQoaAZoCWgPQwgz4Cwly2kKwJSGlFKUaBVLMmgWR0CjtgigCfYjdX2UKGgGaAloD0MIlX8tr1z/EcCUhpRSlGgVSzJoFkdAo7XHlhgE2nV9lChoBmgJaA9DCD22ZcBZag3AlIaUUpRoFUsyaBZHQKO1jdoFmnR1fZQoaAZoCWgPQwggQ8cOKjEPwJSGlFKUaBVLMmgWR0CjtyRJEpiJdX2UKGgGaAloD0MI2LlpM04jBMCUhpRSlGgVSzJoFkdAo7bnT/hl2HV9lChoBmgJaA9DCGuduByvAAXAlIaUUpRoFUsyaBZHQKO2pj4pMHt1fZQoaAZoCWgPQwg+P4wQHo0GwJSGlFKUaBVLMmgWR0CjtmyNOuaGdX2UKGgGaAloD0MI6N1YUBhUB8CUhpRSlGgVSzJoFkdAo7f/nU2DQXV9lChoBmgJaA9DCGrf3F89zgvAlIaUUpRoFUsyaBZHQKO3wrH2h7F1fZQoaAZoCWgPQwg0+PvFbIkUwJSGlFKUaBVLMmgWR0Cjt4GRNh3JdX2UKGgGaAloD0MIMepae59aEsCUhpRSlGgVSzJoFkdAo7dH6KtPpXV9lChoBmgJaA9DCGspIO1/gAfAlIaUUpRoFUsyaBZHQKO432/zreJ1fZQoaAZoCWgPQwj/s+bHX1oJwJSGlFKUaBVLMmgWR0CjuKJHZsbedX2UKGgGaAloD0MIfhtivOaVCsCUhpRSlGgVSzJoFkdAo7hhPKuB+XV9lChoBmgJaA9DCFExzt+EIg7AlIaUUpRoFUsyaBZHQKO4J5Lytmt1fZQoaAZoCWgPQwg3pics8WAHwJSGlFKUaBVLMmgWR0Cjubj4YaYNdX2UKGgGaAloD0MItwvNdRr5EcCUhpRSlGgVSzJoFkdAo7l70Fr2x3V9lChoBmgJaA9DCObrMvyn+wfAlIaUUpRoFUsyaBZHQKO5OrT6SDB1fZQoaAZoCWgPQwgKgzKNJlcUwJSGlFKUaBVLMmgWR0CjuQEIomXxdX2UKGgGaAloD0MImzxlNV2vDcCUhpRSlGgVSzJoFkdAo7qaqABkqnV9lChoBmgJaA9DCJhMFYxKShfAlIaUUpRoFUsyaBZHQKO6XdqtYCB1fZQoaAZoCWgPQwiYMJqV7YMPwJSGlFKUaBVLMmgWR0CjuhzR6WxAdX2UKGgGaAloD0MIn8vUJHhTEcCUhpRSlGgVSzJoFkdAo7njN8ma6XV9lChoBmgJaA9DCJje/lw0tBXAlIaUUpRoFUsyaBZHQKO7f4Vymyh1fZQoaAZoCWgPQwjA7QkS260QwJSGlFKUaBVLMmgWR0Cju0JZGKAKdX2UKGgGaAloD0MIDMwKRbofC8CUhpRSlGgVSzJoFkdAo7sBTKkl/3V9lChoBmgJaA9DCONPVDasyQ7AlIaUUpRoFUsyaBZHQKO6x6PbO/t1fZQoaAZoCWgPQwjNP/omTXMUwJSGlFKUaBVLMmgWR0CjvFz1K5CodX2UKGgGaAloD0MIkxywq8nTCMCUhpRSlGgVSzJoFkdAo7wft8eCCnV9lChoBmgJaA9DCAH8U6pE6RbAlIaUUpRoFUsyaBZHQKO73qFh5Pd1fZQoaAZoCWgPQwjWUkDa/wAUwJSGlFKUaBVLMmgWR0Cju6Tzd1uBdX2UKGgGaAloD0MI9pfdk4dlDMCUhpRSlGgVSzJoFkdAo701VghKUXV9lChoBmgJaA9DCAPMfAc/EQvAlIaUUpRoFUsyaBZHQKO8+KtxMnJ1fZQoaAZoCWgPQwiK6NfWTz8TwJSGlFKUaBVLMmgWR0CjvLfZuhsZdX2UKGgGaAloD0MIVOV7RiKEEsCUhpRSlGgVSzJoFkdAo7x+Xu3MIXV9lChoBmgJaA9DCLx4P26/PBPAlIaUUpRoFUsyaBZHQKO+ECJXQt11fZQoaAZoCWgPQwgukQvO4E8PwJSGlFKUaBVLMmgWR0CjvdLzPKMedX2UKGgGaAloD0MI3zKny2LCD8CUhpRSlGgVSzJoFkdAo72R7LMcInV9lChoBmgJaA9DCEm70cd8AAzAlIaUUpRoFUsyaBZHQKO9WC+UQkJ1fZQoaAZoCWgPQwhZiuQrgRQIwJSGlFKUaBVLMmgWR0CjvunSnccmdX2UKGgGaAloD0MI5WTiVkGMDcCUhpRSlGgVSzJoFkdAo76so4MnZ3V9lChoBmgJaA9DCHHMsieBbQzAlIaUUpRoFUsyaBZHQKO+a5BkZrJ1fZQoaAZoCWgPQwiM22gAb4ETwJSGlFKUaBVLMmgWR0CjvjHV5KODdX2UKGgGaAloD0MItFcfD33XBsCUhpRSlGgVSzJoFkdAo7/KYG+sYHV9lChoBmgJaA9DCAR0X85sdw7AlIaUUpRoFUsyaBZHQKO/jch1Tzd1fZQoaAZoCWgPQwhb6bXZWIkHwJSGlFKUaBVLMmgWR0Cjv0zV2A5JdX2UKGgGaAloD0MI1y/YDds2DcCUhpRSlGgVSzJoFkdAo78TKxLTQXV9lChoBmgJaA9DCJgW9UnuUA7AlIaUUpRoFUsyaBZHQKPAprJr+Hd1fZQoaAZoCWgPQwgRxeQNMNMMwJSGlFKUaBVLMmgWR0CjwGmfPHDKdX2UKGgGaAloD0MIWFNZFHbRDsCUhpRSlGgVSzJoFkdAo8AolMRHw3V9lChoBmgJaA9DCOHSMecZGwnAlIaUUpRoFUsyaBZHQKO/7tx+8Xh1fZQoaAZoCWgPQwj/5sWJr7YLwJSGlFKUaBVLMmgWR0CjwXv3ai9JdX2UKGgGaAloD0MIBWnGoumsDMCUhpRSlGgVSzJoFkdAo8E+ykbgj3V9lChoBmgJaA9DCIxppnudlA7AlIaUUpRoFUsyaBZHQKPA/bVSXMR1fZQoaAZoCWgPQwjfUs4Xe48KwJSGlFKUaBVLMmgWR0CjwMP863iJdX2UKGgGaAloD0MIPnsuU5NgEcCUhpRSlGgVSzJoFkdAo8JY2dd3S3V9lChoBmgJaA9DCGk6OxkcpQnAlIaUUpRoFUsyaBZHQKPCG5/b0vp1fZQoaAZoCWgPQwiBQ6hSs4cOwJSGlFKUaBVLMmgWR0Cjwdp/oaDPdX2UKGgGaAloD0MItcU1PpNtG8CUhpRSlGgVSzJoFkdAo8GgysS00HV9lChoBmgJaA9DCKkUOxqH+g/AlIaUUpRoFUsyaBZHQKPDNb9If8x1fZQoaAZoCWgPQwjUt8zpsjgMwJSGlFKUaBVLMmgWR0Cjwvk5ZKWcdX2UKGgGaAloD0MIeQd40sJlD8CUhpRSlGgVSzJoFkdAo8K4Qg9vCXV9lChoBmgJaA9DCNbgfVUuRBPAlIaUUpRoFUsyaBZHQKPCfo9LYf51fZQoaAZoCWgPQwjds67RcmANwJSGlFKUaBVLMmgWR0CjxBc8TzundX2UKGgGaAloD0MIPBQF+kSeCcCUhpRSlGgVSzJoFkdAo8PaBXjlxXV9lChoBmgJaA9DCBcOhGQB8wvAlIaUUpRoFUsyaBZHQKPDmN83Mpx1fZQoaAZoCWgPQwhjfQOTGwUTwJSGlFKUaBVLMmgWR0Cjw18dxQzldX2UKGgGaAloD0MIpyVWRiMfCMCUhpRSlGgVSzJoFkdAo8TyeoUBXHV9lChoBmgJaA9DCOwvuycP6wjAlIaUUpRoFUsyaBZHQKPEtWFvhqF1fZQoaAZoCWgPQwhJnBVRE/0VwJSGlFKUaBVLMmgWR0CjxHRhttQ9dX2UKGgGaAloD0MIDHOCNjkcBcCUhpRSlGgVSzJoFkdAo8Q6sr/bTXV9lChoBmgJaA9DCKBP5EnSFQTAlIaUUpRoFUsyaBZHQKPFzWcSXdF1fZQoaAZoCWgPQwhB9Q8iGZIJwJSGlFKUaBVLMmgWR0CjxZBnSOR1dX2UKGgGaAloD0MIiNUfYRhwBcCUhpRSlGgVSzJoFkdAo8VPUDuBtnV9lChoBmgJaA9DCG+Cb5o+uwPAlIaUUpRoFUsyaBZHQKPFFaEBbOh1fZQoaAZoCWgPQwh1sWmlECgRwJSGlFKUaBVLMmgWR0CjxrQfhddFdX2UKGgGaAloD0MImxw+6UTCD8CUhpRSlGgVSzJoFkdAo8Z29nK4hHV9lChoBmgJaA9DCNsWZTbI5AjAlIaUUpRoFUsyaBZHQKPGNdSl3yJ1fZQoaAZoCWgPQwhKYd7jTAMRwJSGlFKUaBVLMmgWR0CjxfwswtaqdX2UKGgGaAloD0MIWP58W7CUCcCUhpRSlGgVSzJoFkdAo8ePtpmEoXV9lChoBmgJaA9DCGdl+5C3XAnAlIaUUpRoFUsyaBZHQKPHUoy9EkV1fZQoaAZoCWgPQwhM4xdeSRIGwJSGlFKUaBVLMmgWR0CjxxGQ8wHrdX2UKGgGaAloD0MID9WUZB1uDcCUhpRSlGgVSzJoFkdAo8bX6oESunV9lChoBmgJaA9DCAOUhhqF5AbAlIaUUpRoFUsyaBZHQKPIc4TbnHN1fZQoaAZoCWgPQwiT407pYB0GwJSGlFKUaBVLMmgWR0CjyDZS3soldX2UKGgGaAloD0MIYrt7gO5rDMCUhpRSlGgVSzJoFkdAo8f1Muez2XV9lChoBmgJaA9DCE94CU59AA3AlIaUUpRoFUsyaBZHQKPHu79Q40d1fZQoaAZoCWgPQwi7D0BqEycTwJSGlFKUaBVLMmgWR0CjyVDMvAXVdX2UKGgGaAloD0MIF5tWCoG8CsCUhpRSlGgVSzJoFkdAo8kTx5LRKHV9lChoBmgJaA9DCPCmW3aI/wfAlIaUUpRoFUsyaBZHQKPI0sV+I/J1fZQoaAZoCWgPQwi8dJMYBDYYwJSGlFKUaBVLMmgWR0CjyJkit7rtdX2UKGgGaAloD0MI3GJ+bmjKCcCUhpRSlGgVSzJoFkdAo8opUrCm/HV9lChoBmgJaA9DCM1XycfuIgrAlIaUUpRoFUsyaBZHQKPJ7D3M6il1fZQoaAZoCWgPQwgAAtaqXdMLwJSGlFKUaBVLMmgWR0CjyaswDeTFdX2UKGgGaAloD0MIWwacpWQZCsCUhpRSlGgVSzJoFkdAo8lxgeA/cHV9lChoBmgJaA9DCLUX0XZM3QbAlIaUUpRoFUsyaBZHQKPLCD9wWFh1fZQoaAZoCWgPQwjYYrfPKjMMwJSGlFKUaBVLMmgWR0CjysseXAuadX2UKGgGaAloD0MIm3PwTGhSCcCUhpRSlGgVSzJoFkdAo8qKGFi8WnV9lChoBmgJaA9DCFcju9IyMhDAlIaUUpRoFUsyaBZHQKPKUIHC4z91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (824 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.6703776305774225, "std_reward": 0.9746044966562497, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T11:07:59.326886"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78aeb3a98da8d789276eaa8f8e7819271e565e32f20730d5d396a0eab51f9556
|
3 |
+
size 3212
|