Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +104 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1950.06 +/- 74.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73b1e4c7c8b1405a55bb1c83dfa26cc4409338893bcaab0f7174ada9fa5b4b12
|
3 |
+
size 129155
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6335c61f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6335c6280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6335c6310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6335c63a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa6335c6430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa6335c64c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6335c6550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6335c65e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa6335c6670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6335c6700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6335c6790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6335c6820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fa6335bdba0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
26 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
27 |
+
"optimizer_kwargs": {
|
28 |
+
"alpha": 0.99,
|
29 |
+
"eps": 1e-05,
|
30 |
+
"weight_decay": 0
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"observation_space": {
|
34 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
35 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
36 |
+
"dtype": "float32",
|
37 |
+
"_shape": [
|
38 |
+
28
|
39 |
+
],
|
40 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
41 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
42 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
43 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"_np_random": null
|
45 |
+
},
|
46 |
+
"action_space": {
|
47 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
48 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
49 |
+
"dtype": "float32",
|
50 |
+
"_shape": [
|
51 |
+
8
|
52 |
+
],
|
53 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
54 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
55 |
+
"bounded_below": "[ True True True True True True True True]",
|
56 |
+
"bounded_above": "[ True True True True True True True True]",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 4,
|
60 |
+
"num_timesteps": 2000000,
|
61 |
+
"_total_timesteps": 2000000,
|
62 |
+
"_num_timesteps_at_start": 0,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1674928883441169933,
|
66 |
+
"learning_rate": 0.00096,
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANnqq71kl1C/xRfaPrenAUB81QU+zRXnPp+vOT9FyeU9F3daPw0vuj9h5yc/VsHfPuFlH77aZni/t+rFvqloRL7LW38/fTy7v7+IBD/bTuM+CaVdv39Y1TyLxnG/OZc3PmbIEj+ijC/AJjXIPsaq8b93Niw/5yCiv1cxSz4u+8U/Xoutv078P7/mRVw+6LubvzDjaD+HWBS9JytSP9a/v7+s0qq/PuSgPzhQGr+YyuU+Px6nPezg+z4flN4+SMitvktfIL9LfeI/lU7NvhOO8j9myBI/oowvwCY1yD7GqvG/W8dEPicrNL8cteo+Lsm3PzW2M75Lofs957YIv1I/lj/aPP0+Nt4jvb6lXr9wDjE9L2GCv+tZzz9G466+Ok3/PvxjNz+LtjNAoP2Yv7Lxzj7KWl2/M8zMvdrLET8WgQY/zD3fv+aouj6LqyPAa5cHP9tYPT/ZHPW+x4T+Pv7MGEAWoqI/MvO7PTVbCr9hkVS/OKUpPy0lOcBZQD6/0lknPznuOD2C/Ae/ZLGhPjE9iz/uR7c/ZrMkwIHtor+ClE0+v8tov1fexcBGdMY/Cks2v8w937/mqLo+i6sjwGuXBz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
79 |
+
},
|
80 |
+
"_last_original_obs": {
|
81 |
+
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGzew0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxnkUvQAAAAAWndm/AAAAAECIPb0AAAAA7w3aPwAAAADQXeU8AAAAAANy6D8AAAAA3tITOwAAAAAEKP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd8qKtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLM1hrwAAAAAuIDvvwAAAADke429AAAAAIIN/j8AAAAAgMC5vQAAAACTHP8/AAAAAATjAD0AAAAAG4PbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTz5TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxDRq8AAAAAIjs8r8AAAAA4+AGPgAAAAB/ifs/AAAAABYVaT0AAAAA/APfPwAAAABkQMO9AAAAAKoD9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKKVG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsHd5PQAAAABRXeG/AAAAANP0GL0AAAAAvUH6PwAAAACgcQm9AAAAAImrAEAAAAAAagw2OwAAAADeTuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
83 |
+
},
|
84 |
+
"_episode_num": 0,
|
85 |
+
"use_sde": true,
|
86 |
+
"sde_sample_freq": -1,
|
87 |
+
"_current_progress_remaining": 0.0,
|
88 |
+
"ep_info_buffer": {
|
89 |
+
":type:": "<class 'collections.deque'>",
|
90 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8KCQkona6MAWyUTegDjAF0lEdAqavkQRPGhnV9lChoBkdAn9d3Wz4UOGgHTegDaAhHQKmtXxhlUZN1fZQoaAZHQJ6fpLi++M9oB03oA2gIR0Cprw6V2Rq5dX2UKGgGR0Cer+I42jwhaAdN6ANoCEdAqba+B4D9wXV9lChoBkdAnw0DjNpudmgHTegDaAhHQKm38gTyrgh1fZQoaAZHQJ6W9syi22JoB03oA2gIR0CpuYoAGSpzdX2UKGgGR0Cfp1189fTkaAdN6ANoCEdAqbsE2pAD73V9lChoBkdAnUL09ECvHWgHTegDaAhHQKnC01pCa7V1fZQoaAZHQJ41i0+kgwJoB03oA2gIR0Cpw+1YyO7ydX2UKGgGR0CehZMGX5WSaAdN6ANoCEdAqcVFnRLK3nV9lChoBkdAnxEKyKNyYGgHTegDaAhHQKnG1jKgZjx1fZQoaAZHQJ6h73UQTVVoB03oA2gIR0CpzrT6JqIrdX2UKGgGR0Ceaur92ovSaAdN6ANoCEdAqc/NJ8OTaHV9lChoBkdAnkmzIzWPLmgHTegDaAhHQKnRGxzq8lJ1fZQoaAZHQJ4q9NnGsFNoB03oA2gIR0Cp0qOU2UB5dX2UKGgGR0CeeOXFLnLaaAdN6ANoCEdAqdpbh3qzJXV9lChoBkdAn7Mg8wHqvGgHTegDaAhHQKnbdLmp2ll1fZQoaAZHQJ5oFNbkfcNoB03oA2gIR0Cp3NShi9ZidX2UKGgGR0CeyYmOEM9baAdN6ANoCEdAqd5U4ku6E3V9lChoBkdAnisnJo0yg2gHTegDaAhHQKnmYiMYMv11fZQoaAZHQKAeJDXvphZoB03oA2gIR0Cp54oh6jWTdX2UKGgGR0CeW0ns9jgAaAdN6ANoCEdAqej3VoYek3V9lChoBkdAn9jvnOjZc2gHTegDaAhHQKnq2xSHdoF1fZQoaAZHQJ+P1LRKHwhoB03oA2gIR0Cp8xqNQ0oCdX2UKGgGR0CfUV3+MqBmaAdN6ANoCEdAqfRCEeyRjnV9lChoBkdAn0vSxiXpn2gHTegDaAhHQKn1t6w+t8x1fZQoaAZHQJ4+lnkDIR1oB03oA2gIR0Cp91HUDuBudX2UKGgGR0CfQy5ZKWcCaAdN6ANoCEdAqf87vuw5enV9lChoBkdAnvIONo8IRmgHTegDaAhHQKoAX2mHgxd1fZQoaAZHQJ/FJk7OmixoB03oA2gIR0CqAcBrnDBNdX2UKGgGR0Ce4eNL127naAdN6ANoCEdAqgNM7QswtnV9lChoBkdAVD+0a6z3RGgHS9loCEdAqgXWbNKRMnV9lChoBkdAnjIcRUWEb2gHTegDaAhHQKoLBYs/Y8N1fZQoaAZHQJ6tFDKHO8loB03oA2gIR0CqDCZz5oGqdX2UKGgGR0CgG8zisGPgaAdN6ANoCEdAqg2Xied073V9lChoBkdAnfboeLehwmgHTegDaAhHQKoR5p/wy7B1fZQoaAZHQIQC1nuiN85oB03oA2gIR0CqF0ytmthedX2UKGgGR0CenS+qioKlaAdN6ANoCEdAqhhvsqril3V9lChoBkdAnV5AqVhTfmgHTegDaAhHQKoZ24vvjOt1fZQoaAZHQJchDHHWBjFoB03oA2gIR0CqHghOpKjBdX2UKGgGR0CaiFc4HX2/aAdN6ANoCEdAqiNl6eGwinV9lChoBkdAnnoWGyon8mgHTegDaAhHQKokjYhdMTN1fZQoaAZHQJ2JbXI2fkFoB03oA2gIR0CqJfSde6ZqdX2UKGgGR0CYrQ9t/FzdaAdN6ANoCEdAqiolRk3CK3V9lChoBkdAnitsZHd43WgHTegDaAhHQKovaHck+ot1fZQoaAZHQJ1ot9Ujs2NoB03oA2gIR0CqMIDxCpm3dX2UKGgGR0CfJqpdKNADaAdN6ANoCEdAqjHih6By0nV9lChoBkdAni3mlANXo2gHTegDaAhHQKo2Cr5qM3t1fZQoaAZHQJ0QVz4k/r1oB03oA2gIR0CqO2YjSofkdX2UKGgGR0CeuRDD0lJIaAdN6ANoCEdAqjx8yP+4snV9lChoBkdAnpCD+JgssmgHTegDaAhHQKo910xM3611fZQoaAZHQJ5xlTefqX5oB03oA2gIR0CqQezGPxQSdX2UKGgGR0CfypncL0BfaAdN6ANoCEdAqkccPatcOnV9lChoBkdAntQMfigkC2gHTegDaAhHQKpIN2saKk51fZQoaAZHQJ6MVu0kWyloB03oA2gIR0CqSZpVsDW9dX2UKGgGR0CeOdZ26kIpaAdN6ANoCEdAqk2x39rGi3V9lChoBkdAnh5ocR15jmgHTegDaAhHQKpS/AXVLBd1fZQoaAZHQJxOxdKNAC5oB03oA2gIR0CqVB8oH9m6dX2UKGgGR0Ce8ErPdEb6aAdN6ANoCEdAqlV7htLteHV9lChoBkdAnTZoyfthNWgHTegDaAhHQKpZkWv8qF11fZQoaAZHQJ2siuKXOW1oB03oA2gIR0CqXte0Xxe+dX2UKGgGR0CeysekpI+XaAdN6ANoCEdAql/tSOzY3HV9lChoBkdAnEy7SqlxfmgHTegDaAhHQKphTC3PRiR1fZQoaAZHQJ19N/J/5L1oB03oA2gIR0CqZZ18CxNZdX2UKGgGR0CgB3YfGMn7aAdN6ANoCEdAqmsP2Xb/O3V9lChoBkdAm65pyp71I2gHTegDaAhHQKpsLrYXfqJ1fZQoaAZHQJ6Wgl7dBSloB03oA2gIR0CqbZLpRoAXdX2UKGgGR0Cepf9W6shgaAdN6ANoCEdAqnGiV6eGwnV9lChoBkdAm6H6V6eGwmgHTegDaAhHQKp28JLM9r51fZQoaAZHQJ8EwOBlMAZoB03oA2gIR0CqeA8FY+0PdX2UKGgGR0CeW2/LDAJtaAdN6ANoCEdAqnlsvkBCD3V9lChoBkdAnNJK/Zdv9GgHTegDaAhHQKp9kbMotth1fZQoaAZHQJwkTJfYzzpoB03oA2gIR0CqguF3pwCKdX2UKGgGR0CEvegW8AaOaAdN6ANoCEdAqoP/s7dSEXV9lChoBkdAnZdkH+qBE2gHTegDaAhHQKqFXfmcOLB1fZQoaAZHQJ05ur2g399oB03oA2gIR0CqiZIAGSpzdX2UKGgGR0Cd/fUxVQyiaAdN6ANoCEdAqo7nUONHY3V9lChoBkdAnfaHJ1aGH2gHTegDaAhHQKqQCglF+d91fZQoaAZHQJ68gxvegthoB03oA2gIR0CqkXyidrftdX2UKGgGR0Cd7JdeY2KmaAdN6ANoCEdAqpWe9tdiUnV9lChoBkdAnJpAMtsen2gHTegDaAhHQKqaynUlRgt1fZQoaAZHQJ2NpZRsMy9oB03oA2gIR0Cqm+49ovi+dX2UKGgGR0CfYRNFjNILaAdN6ANoCEdAqp1PIjnmrHV9lChoBkdAnLktFKCg9WgHTegDaAhHQKqhw4JeE7J1fZQoaAZHQJ5L8hQm/nJoB03oA2gIR0CqqGh3qzJIdX2UKGgGR0CdPBg6ltTDaAdN6ANoCEdAqqoxWT5ft3V9lChoBkdAnbscXFcY7GgHTegDaAhHQKqsdk/bCaZ1fZQoaAZHQJ6fQkKNQ0poB03oA2gIR0CqsXA2qDK6dX2UKGgGR0Cdyqlgc94eaAdN6ANoCEdAqratY+0PYnV9lChoBkdAnxocV1wHaGgHTegDaAhHQKq3xva11GN1fZQoaAZHQJ69Cv6j325oB03oA2gIR0CquTIikftAdX2UKGgGR0CeptJ1q33IaAdN6ANoCEdAqr1z4xk/bHV9lChoBkdAnuDeNxVAA2gHTegDaAhHQKrCuNAC4jN1fZQoaAZHQJ7hN1U2kzpoB03oA2gIR0Cqw9uMVDa5dX2UKGgGR0Ce+TpBX0XhaAdN6ANoCEdAqsU4bbUPQXV9lChoBkdAn0i1RxcVxmgHTegDaAhHQKrJbQk5ZKZ1fZQoaAZHQJ8Ah97WuoxoB03oA2gIR0CqzsGfXf65dX2UKGgGR0Ceyf8jzI3jaAdN6ANoCEdAqs/bURWcSXV9lChoBkdAnvRZvUBnz2gHTegDaAhHQKrROjmCAc11fZQoaAZHQJ6ZZjurp7loB03oA2gIR0Cq1Vz8P4EfdWUu"
|
91 |
+
},
|
92 |
+
"ep_success_buffer": {
|
93 |
+
":type:": "<class 'collections.deque'>",
|
94 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
95 |
+
},
|
96 |
+
"_n_updates": 62500,
|
97 |
+
"n_steps": 8,
|
98 |
+
"gamma": 0.99,
|
99 |
+
"gae_lambda": 0.9,
|
100 |
+
"ent_coef": 0.0,
|
101 |
+
"vf_coef": 0.4,
|
102 |
+
"max_grad_norm": 0.5,
|
103 |
+
"normalize_advantage": false
|
104 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e89edc948a66be545829a5d1855c1e553d2a7a1c4e1714220462f3f5c9218c5
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:965e3f1e9f20bc9c26f1a05abf166feed68334b278021ca5dda2d81f45e210ca
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6335c61f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6335c6280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6335c6310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6335c63a0>", "_build": "<function ActorCriticPolicy._build at 0x7fa6335c6430>", "forward": "<function ActorCriticPolicy.forward at 0x7fa6335c64c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6335c6550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6335c65e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa6335c6670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6335c6700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6335c6790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6335c6820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa6335bdba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674928883441169933, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANnqq71kl1C/xRfaPrenAUB81QU+zRXnPp+vOT9FyeU9F3daPw0vuj9h5yc/VsHfPuFlH77aZni/t+rFvqloRL7LW38/fTy7v7+IBD/bTuM+CaVdv39Y1TyLxnG/OZc3PmbIEj+ijC/AJjXIPsaq8b93Niw/5yCiv1cxSz4u+8U/Xoutv078P7/mRVw+6LubvzDjaD+HWBS9JytSP9a/v7+s0qq/PuSgPzhQGr+YyuU+Px6nPezg+z4flN4+SMitvktfIL9LfeI/lU7NvhOO8j9myBI/oowvwCY1yD7GqvG/W8dEPicrNL8cteo+Lsm3PzW2M75Lofs957YIv1I/lj/aPP0+Nt4jvb6lXr9wDjE9L2GCv+tZzz9G466+Ok3/PvxjNz+LtjNAoP2Yv7Lxzj7KWl2/M8zMvdrLET8WgQY/zD3fv+aouj6LqyPAa5cHP9tYPT/ZHPW+x4T+Pv7MGEAWoqI/MvO7PTVbCr9hkVS/OKUpPy0lOcBZQD6/0lknPznuOD2C/Ae/ZLGhPjE9iz/uR7c/ZrMkwIHtor+ClE0+v8tov1fexcBGdMY/Cks2v8w937/mqLo+i6sjwGuXBz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGzew0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxnkUvQAAAAAWndm/AAAAAECIPb0AAAAA7w3aPwAAAADQXeU8AAAAAANy6D8AAAAA3tITOwAAAAAEKP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd8qKtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLM1hrwAAAAAuIDvvwAAAADke429AAAAAIIN/j8AAAAAgMC5vQAAAACTHP8/AAAAAATjAD0AAAAAG4PbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTz5TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxDRq8AAAAAIjs8r8AAAAA4+AGPgAAAAB/ifs/AAAAABYVaT0AAAAA/APfPwAAAABkQMO9AAAAAKoD9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKKVG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsHd5PQAAAABRXeG/AAAAANP0GL0AAAAAvUH6PwAAAACgcQm9AAAAAImrAEAAAAAAagw2OwAAAADeTuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8KCQkona6MAWyUTegDjAF0lEdAqavkQRPGhnV9lChoBkdAn9d3Wz4UOGgHTegDaAhHQKmtXxhlUZN1fZQoaAZHQJ6fpLi++M9oB03oA2gIR0Cprw6V2Rq5dX2UKGgGR0Cer+I42jwhaAdN6ANoCEdAqba+B4D9wXV9lChoBkdAnw0DjNpudmgHTegDaAhHQKm38gTyrgh1fZQoaAZHQJ6W9syi22JoB03oA2gIR0CpuYoAGSpzdX2UKGgGR0Cfp1189fTkaAdN6ANoCEdAqbsE2pAD73V9lChoBkdAnUL09ECvHWgHTegDaAhHQKnC01pCa7V1fZQoaAZHQJ41i0+kgwJoB03oA2gIR0Cpw+1YyO7ydX2UKGgGR0CehZMGX5WSaAdN6ANoCEdAqcVFnRLK3nV9lChoBkdAnxEKyKNyYGgHTegDaAhHQKnG1jKgZjx1fZQoaAZHQJ6h73UQTVVoB03oA2gIR0CpzrT6JqIrdX2UKGgGR0Ceaur92ovSaAdN6ANoCEdAqc/NJ8OTaHV9lChoBkdAnkmzIzWPLmgHTegDaAhHQKnRGxzq8lJ1fZQoaAZHQJ4q9NnGsFNoB03oA2gIR0Cp0qOU2UB5dX2UKGgGR0CeeOXFLnLaaAdN6ANoCEdAqdpbh3qzJXV9lChoBkdAn7Mg8wHqvGgHTegDaAhHQKnbdLmp2ll1fZQoaAZHQJ5oFNbkfcNoB03oA2gIR0Cp3NShi9ZidX2UKGgGR0CeyYmOEM9baAdN6ANoCEdAqd5U4ku6E3V9lChoBkdAnisnJo0yg2gHTegDaAhHQKnmYiMYMv11fZQoaAZHQKAeJDXvphZoB03oA2gIR0Cp54oh6jWTdX2UKGgGR0CeW0ns9jgAaAdN6ANoCEdAqej3VoYek3V9lChoBkdAn9jvnOjZc2gHTegDaAhHQKnq2xSHdoF1fZQoaAZHQJ+P1LRKHwhoB03oA2gIR0Cp8xqNQ0oCdX2UKGgGR0CfUV3+MqBmaAdN6ANoCEdAqfRCEeyRjnV9lChoBkdAn0vSxiXpn2gHTegDaAhHQKn1t6w+t8x1fZQoaAZHQJ4+lnkDIR1oB03oA2gIR0Cp91HUDuBudX2UKGgGR0CfQy5ZKWcCaAdN6ANoCEdAqf87vuw5enV9lChoBkdAnvIONo8IRmgHTegDaAhHQKoAX2mHgxd1fZQoaAZHQJ/FJk7OmixoB03oA2gIR0CqAcBrnDBNdX2UKGgGR0Ce4eNL127naAdN6ANoCEdAqgNM7QswtnV9lChoBkdAVD+0a6z3RGgHS9loCEdAqgXWbNKRMnV9lChoBkdAnjIcRUWEb2gHTegDaAhHQKoLBYs/Y8N1fZQoaAZHQJ6tFDKHO8loB03oA2gIR0CqDCZz5oGqdX2UKGgGR0CgG8zisGPgaAdN6ANoCEdAqg2Xied073V9lChoBkdAnfboeLehwmgHTegDaAhHQKoR5p/wy7B1fZQoaAZHQIQC1nuiN85oB03oA2gIR0CqF0ytmthedX2UKGgGR0CenS+qioKlaAdN6ANoCEdAqhhvsqril3V9lChoBkdAnV5AqVhTfmgHTegDaAhHQKoZ24vvjOt1fZQoaAZHQJchDHHWBjFoB03oA2gIR0CqHghOpKjBdX2UKGgGR0CaiFc4HX2/aAdN6ANoCEdAqiNl6eGwinV9lChoBkdAnnoWGyon8mgHTegDaAhHQKokjYhdMTN1fZQoaAZHQJ2JbXI2fkFoB03oA2gIR0CqJfSde6ZqdX2UKGgGR0CYrQ9t/FzdaAdN6ANoCEdAqiolRk3CK3V9lChoBkdAnitsZHd43WgHTegDaAhHQKovaHck+ot1fZQoaAZHQJ1ot9Ujs2NoB03oA2gIR0CqMIDxCpm3dX2UKGgGR0CfJqpdKNADaAdN6ANoCEdAqjHih6By0nV9lChoBkdAni3mlANXo2gHTegDaAhHQKo2Cr5qM3t1fZQoaAZHQJ0QVz4k/r1oB03oA2gIR0CqO2YjSofkdX2UKGgGR0CeuRDD0lJIaAdN6ANoCEdAqjx8yP+4snV9lChoBkdAnpCD+JgssmgHTegDaAhHQKo910xM3611fZQoaAZHQJ5xlTefqX5oB03oA2gIR0CqQezGPxQSdX2UKGgGR0CfypncL0BfaAdN6ANoCEdAqkccPatcOnV9lChoBkdAntQMfigkC2gHTegDaAhHQKpIN2saKk51fZQoaAZHQJ6MVu0kWyloB03oA2gIR0CqSZpVsDW9dX2UKGgGR0CeOdZ26kIpaAdN6ANoCEdAqk2x39rGi3V9lChoBkdAnh5ocR15jmgHTegDaAhHQKpS/AXVLBd1fZQoaAZHQJxOxdKNAC5oB03oA2gIR0CqVB8oH9m6dX2UKGgGR0Ce8ErPdEb6aAdN6ANoCEdAqlV7htLteHV9lChoBkdAnTZoyfthNWgHTegDaAhHQKpZkWv8qF11fZQoaAZHQJ2siuKXOW1oB03oA2gIR0CqXte0Xxe+dX2UKGgGR0CeysekpI+XaAdN6ANoCEdAql/tSOzY3HV9lChoBkdAnEy7SqlxfmgHTegDaAhHQKphTC3PRiR1fZQoaAZHQJ19N/J/5L1oB03oA2gIR0CqZZ18CxNZdX2UKGgGR0CgB3YfGMn7aAdN6ANoCEdAqmsP2Xb/O3V9lChoBkdAm65pyp71I2gHTegDaAhHQKpsLrYXfqJ1fZQoaAZHQJ6Wgl7dBSloB03oA2gIR0CqbZLpRoAXdX2UKGgGR0Cepf9W6shgaAdN6ANoCEdAqnGiV6eGwnV9lChoBkdAm6H6V6eGwmgHTegDaAhHQKp28JLM9r51fZQoaAZHQJ8EwOBlMAZoB03oA2gIR0CqeA8FY+0PdX2UKGgGR0CeW2/LDAJtaAdN6ANoCEdAqnlsvkBCD3V9lChoBkdAnNJK/Zdv9GgHTegDaAhHQKp9kbMotth1fZQoaAZHQJwkTJfYzzpoB03oA2gIR0CqguF3pwCKdX2UKGgGR0CEvegW8AaOaAdN6ANoCEdAqoP/s7dSEXV9lChoBkdAnZdkH+qBE2gHTegDaAhHQKqFXfmcOLB1fZQoaAZHQJ05ur2g399oB03oA2gIR0CqiZIAGSpzdX2UKGgGR0Cd/fUxVQyiaAdN6ANoCEdAqo7nUONHY3V9lChoBkdAnfaHJ1aGH2gHTegDaAhHQKqQCglF+d91fZQoaAZHQJ68gxvegthoB03oA2gIR0CqkXyidrftdX2UKGgGR0Cd7JdeY2KmaAdN6ANoCEdAqpWe9tdiUnV9lChoBkdAnJpAMtsen2gHTegDaAhHQKqaynUlRgt1fZQoaAZHQJ2NpZRsMy9oB03oA2gIR0Cqm+49ovi+dX2UKGgGR0CfYRNFjNILaAdN6ANoCEdAqp1PIjnmrHV9lChoBkdAnLktFKCg9WgHTegDaAhHQKqhw4JeE7J1fZQoaAZHQJ5L8hQm/nJoB03oA2gIR0CqqGh3qzJIdX2UKGgGR0CdPBg6ltTDaAdN6ANoCEdAqqoxWT5ft3V9lChoBkdAnbscXFcY7GgHTegDaAhHQKqsdk/bCaZ1fZQoaAZHQJ6fQkKNQ0poB03oA2gIR0CqsXA2qDK6dX2UKGgGR0Cdyqlgc94eaAdN6ANoCEdAqratY+0PYnV9lChoBkdAnxocV1wHaGgHTegDaAhHQKq3xva11GN1fZQoaAZHQJ69Cv6j325oB03oA2gIR0CquTIikftAdX2UKGgGR0CeptJ1q33IaAdN6ANoCEdAqr1z4xk/bHV9lChoBkdAnuDeNxVAA2gHTegDaAhHQKrCuNAC4jN1fZQoaAZHQJ7hN1U2kzpoB03oA2gIR0Cqw9uMVDa5dX2UKGgGR0Ce+TpBX0XhaAdN6ANoCEdAqsU4bbUPQXV9lChoBkdAn0i1RxcVxmgHTegDaAhHQKrJbQk5ZKZ1fZQoaAZHQJ8Ah97WuoxoB03oA2gIR0CqzsGfXf65dX2UKGgGR0Ceyf8jzI3jaAdN6ANoCEdAqs/bURWcSXV9lChoBkdAnvRZvUBnz2gHTegDaAhHQKrROjmCAc11fZQoaAZHQJ6ZZjurp7loB03oA2gIR0Cq1Vz8P4EfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:617d1764d4fd693daa32c72ba832c9412c96ddd4bdbfe93ffecb4528d0bf8dd0
|
3 |
+
size 1026110
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1950.0637703246437, "std_reward": 74.7694762338878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-28T18:53:49.189593"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7153592b82ecfd515880a97229c060664ee91be1be71e55e83eab5aa7bf56b2
|
3 |
+
size 2136
|