harikc456 commited on
Commit
d24dccf
·
1 Parent(s): f3052dd

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1950.06 +/- 74.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73b1e4c7c8b1405a55bb1c83dfa26cc4409338893bcaab0f7174ada9fa5b4b12
3
+ size 129155
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6335c61f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6335c6280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6335c6310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6335c63a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa6335c6430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa6335c64c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6335c6550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6335c65e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa6335c6670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6335c6700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6335c6790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6335c6820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fa6335bdba0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 28
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 8
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True True True]",
56
+ "bounded_above": "[ True True True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 2000000,
61
+ "_total_timesteps": 2000000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1674928883441169933,
66
+ "learning_rate": 0.00096,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANnqq71kl1C/xRfaPrenAUB81QU+zRXnPp+vOT9FyeU9F3daPw0vuj9h5yc/VsHfPuFlH77aZni/t+rFvqloRL7LW38/fTy7v7+IBD/bTuM+CaVdv39Y1TyLxnG/OZc3PmbIEj+ijC/AJjXIPsaq8b93Niw/5yCiv1cxSz4u+8U/Xoutv078P7/mRVw+6LubvzDjaD+HWBS9JytSP9a/v7+s0qq/PuSgPzhQGr+YyuU+Px6nPezg+z4flN4+SMitvktfIL9LfeI/lU7NvhOO8j9myBI/oowvwCY1yD7GqvG/W8dEPicrNL8cteo+Lsm3PzW2M75Lofs957YIv1I/lj/aPP0+Nt4jvb6lXr9wDjE9L2GCv+tZzz9G466+Ok3/PvxjNz+LtjNAoP2Yv7Lxzj7KWl2/M8zMvdrLET8WgQY/zD3fv+aouj6LqyPAa5cHP9tYPT/ZHPW+x4T+Pv7MGEAWoqI/MvO7PTVbCr9hkVS/OKUpPy0lOcBZQD6/0lknPznuOD2C/Ae/ZLGhPjE9iz/uR7c/ZrMkwIHtor+ClE0+v8tov1fexcBGdMY/Cks2v8w937/mqLo+i6sjwGuXBz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGzew0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxnkUvQAAAAAWndm/AAAAAECIPb0AAAAA7w3aPwAAAADQXeU8AAAAAANy6D8AAAAA3tITOwAAAAAEKP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd8qKtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLM1hrwAAAAAuIDvvwAAAADke429AAAAAIIN/j8AAAAAgMC5vQAAAACTHP8/AAAAAATjAD0AAAAAG4PbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTz5TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxDRq8AAAAAIjs8r8AAAAA4+AGPgAAAAB/ifs/AAAAABYVaT0AAAAA/APfPwAAAABkQMO9AAAAAKoD9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKKVG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsHd5PQAAAABRXeG/AAAAANP0GL0AAAAAvUH6PwAAAACgcQm9AAAAAImrAEAAAAAAagw2OwAAAADeTuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": true,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8KCQkona6MAWyUTegDjAF0lEdAqavkQRPGhnV9lChoBkdAn9d3Wz4UOGgHTegDaAhHQKmtXxhlUZN1fZQoaAZHQJ6fpLi++M9oB03oA2gIR0Cprw6V2Rq5dX2UKGgGR0Cer+I42jwhaAdN6ANoCEdAqba+B4D9wXV9lChoBkdAnw0DjNpudmgHTegDaAhHQKm38gTyrgh1fZQoaAZHQJ6W9syi22JoB03oA2gIR0CpuYoAGSpzdX2UKGgGR0Cfp1189fTkaAdN6ANoCEdAqbsE2pAD73V9lChoBkdAnUL09ECvHWgHTegDaAhHQKnC01pCa7V1fZQoaAZHQJ41i0+kgwJoB03oA2gIR0Cpw+1YyO7ydX2UKGgGR0CehZMGX5WSaAdN6ANoCEdAqcVFnRLK3nV9lChoBkdAnxEKyKNyYGgHTegDaAhHQKnG1jKgZjx1fZQoaAZHQJ6h73UQTVVoB03oA2gIR0CpzrT6JqIrdX2UKGgGR0Ceaur92ovSaAdN6ANoCEdAqc/NJ8OTaHV9lChoBkdAnkmzIzWPLmgHTegDaAhHQKnRGxzq8lJ1fZQoaAZHQJ4q9NnGsFNoB03oA2gIR0Cp0qOU2UB5dX2UKGgGR0CeeOXFLnLaaAdN6ANoCEdAqdpbh3qzJXV9lChoBkdAn7Mg8wHqvGgHTegDaAhHQKnbdLmp2ll1fZQoaAZHQJ5oFNbkfcNoB03oA2gIR0Cp3NShi9ZidX2UKGgGR0CeyYmOEM9baAdN6ANoCEdAqd5U4ku6E3V9lChoBkdAnisnJo0yg2gHTegDaAhHQKnmYiMYMv11fZQoaAZHQKAeJDXvphZoB03oA2gIR0Cp54oh6jWTdX2UKGgGR0CeW0ns9jgAaAdN6ANoCEdAqej3VoYek3V9lChoBkdAn9jvnOjZc2gHTegDaAhHQKnq2xSHdoF1fZQoaAZHQJ+P1LRKHwhoB03oA2gIR0Cp8xqNQ0oCdX2UKGgGR0CfUV3+MqBmaAdN6ANoCEdAqfRCEeyRjnV9lChoBkdAn0vSxiXpn2gHTegDaAhHQKn1t6w+t8x1fZQoaAZHQJ4+lnkDIR1oB03oA2gIR0Cp91HUDuBudX2UKGgGR0CfQy5ZKWcCaAdN6ANoCEdAqf87vuw5enV9lChoBkdAnvIONo8IRmgHTegDaAhHQKoAX2mHgxd1fZQoaAZHQJ/FJk7OmixoB03oA2gIR0CqAcBrnDBNdX2UKGgGR0Ce4eNL127naAdN6ANoCEdAqgNM7QswtnV9lChoBkdAVD+0a6z3RGgHS9loCEdAqgXWbNKRMnV9lChoBkdAnjIcRUWEb2gHTegDaAhHQKoLBYs/Y8N1fZQoaAZHQJ6tFDKHO8loB03oA2gIR0CqDCZz5oGqdX2UKGgGR0CgG8zisGPgaAdN6ANoCEdAqg2Xied073V9lChoBkdAnfboeLehwmgHTegDaAhHQKoR5p/wy7B1fZQoaAZHQIQC1nuiN85oB03oA2gIR0CqF0ytmthedX2UKGgGR0CenS+qioKlaAdN6ANoCEdAqhhvsqril3V9lChoBkdAnV5AqVhTfmgHTegDaAhHQKoZ24vvjOt1fZQoaAZHQJchDHHWBjFoB03oA2gIR0CqHghOpKjBdX2UKGgGR0CaiFc4HX2/aAdN6ANoCEdAqiNl6eGwinV9lChoBkdAnnoWGyon8mgHTegDaAhHQKokjYhdMTN1fZQoaAZHQJ2JbXI2fkFoB03oA2gIR0CqJfSde6ZqdX2UKGgGR0CYrQ9t/FzdaAdN6ANoCEdAqiolRk3CK3V9lChoBkdAnitsZHd43WgHTegDaAhHQKovaHck+ot1fZQoaAZHQJ1ot9Ujs2NoB03oA2gIR0CqMIDxCpm3dX2UKGgGR0CfJqpdKNADaAdN6ANoCEdAqjHih6By0nV9lChoBkdAni3mlANXo2gHTegDaAhHQKo2Cr5qM3t1fZQoaAZHQJ0QVz4k/r1oB03oA2gIR0CqO2YjSofkdX2UKGgGR0CeuRDD0lJIaAdN6ANoCEdAqjx8yP+4snV9lChoBkdAnpCD+JgssmgHTegDaAhHQKo910xM3611fZQoaAZHQJ5xlTefqX5oB03oA2gIR0CqQezGPxQSdX2UKGgGR0CfypncL0BfaAdN6ANoCEdAqkccPatcOnV9lChoBkdAntQMfigkC2gHTegDaAhHQKpIN2saKk51fZQoaAZHQJ6MVu0kWyloB03oA2gIR0CqSZpVsDW9dX2UKGgGR0CeOdZ26kIpaAdN6ANoCEdAqk2x39rGi3V9lChoBkdAnh5ocR15jmgHTegDaAhHQKpS/AXVLBd1fZQoaAZHQJxOxdKNAC5oB03oA2gIR0CqVB8oH9m6dX2UKGgGR0Ce8ErPdEb6aAdN6ANoCEdAqlV7htLteHV9lChoBkdAnTZoyfthNWgHTegDaAhHQKpZkWv8qF11fZQoaAZHQJ2siuKXOW1oB03oA2gIR0CqXte0Xxe+dX2UKGgGR0CeysekpI+XaAdN6ANoCEdAql/tSOzY3HV9lChoBkdAnEy7SqlxfmgHTegDaAhHQKphTC3PRiR1fZQoaAZHQJ19N/J/5L1oB03oA2gIR0CqZZ18CxNZdX2UKGgGR0CgB3YfGMn7aAdN6ANoCEdAqmsP2Xb/O3V9lChoBkdAm65pyp71I2gHTegDaAhHQKpsLrYXfqJ1fZQoaAZHQJ6Wgl7dBSloB03oA2gIR0CqbZLpRoAXdX2UKGgGR0Cepf9W6shgaAdN6ANoCEdAqnGiV6eGwnV9lChoBkdAm6H6V6eGwmgHTegDaAhHQKp28JLM9r51fZQoaAZHQJ8EwOBlMAZoB03oA2gIR0CqeA8FY+0PdX2UKGgGR0CeW2/LDAJtaAdN6ANoCEdAqnlsvkBCD3V9lChoBkdAnNJK/Zdv9GgHTegDaAhHQKp9kbMotth1fZQoaAZHQJwkTJfYzzpoB03oA2gIR0CqguF3pwCKdX2UKGgGR0CEvegW8AaOaAdN6ANoCEdAqoP/s7dSEXV9lChoBkdAnZdkH+qBE2gHTegDaAhHQKqFXfmcOLB1fZQoaAZHQJ05ur2g399oB03oA2gIR0CqiZIAGSpzdX2UKGgGR0Cd/fUxVQyiaAdN6ANoCEdAqo7nUONHY3V9lChoBkdAnfaHJ1aGH2gHTegDaAhHQKqQCglF+d91fZQoaAZHQJ68gxvegthoB03oA2gIR0CqkXyidrftdX2UKGgGR0Cd7JdeY2KmaAdN6ANoCEdAqpWe9tdiUnV9lChoBkdAnJpAMtsen2gHTegDaAhHQKqaynUlRgt1fZQoaAZHQJ2NpZRsMy9oB03oA2gIR0Cqm+49ovi+dX2UKGgGR0CfYRNFjNILaAdN6ANoCEdAqp1PIjnmrHV9lChoBkdAnLktFKCg9WgHTegDaAhHQKqhw4JeE7J1fZQoaAZHQJ5L8hQm/nJoB03oA2gIR0CqqGh3qzJIdX2UKGgGR0CdPBg6ltTDaAdN6ANoCEdAqqoxWT5ft3V9lChoBkdAnbscXFcY7GgHTegDaAhHQKqsdk/bCaZ1fZQoaAZHQJ6fQkKNQ0poB03oA2gIR0CqsXA2qDK6dX2UKGgGR0Cdyqlgc94eaAdN6ANoCEdAqratY+0PYnV9lChoBkdAnxocV1wHaGgHTegDaAhHQKq3xva11GN1fZQoaAZHQJ69Cv6j325oB03oA2gIR0CquTIikftAdX2UKGgGR0CeptJ1q33IaAdN6ANoCEdAqr1z4xk/bHV9lChoBkdAnuDeNxVAA2gHTegDaAhHQKrCuNAC4jN1fZQoaAZHQJ7hN1U2kzpoB03oA2gIR0Cqw9uMVDa5dX2UKGgGR0Ce+TpBX0XhaAdN6ANoCEdAqsU4bbUPQXV9lChoBkdAn0i1RxcVxmgHTegDaAhHQKrJbQk5ZKZ1fZQoaAZHQJ8Ah97WuoxoB03oA2gIR0CqzsGfXf65dX2UKGgGR0Ceyf8jzI3jaAdN6ANoCEdAqs/bURWcSXV9lChoBkdAnvRZvUBnz2gHTegDaAhHQKrROjmCAc11fZQoaAZHQJ6ZZjurp7loB03oA2gIR0Cq1Vz8P4EfdWUu"
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 62500,
97
+ "n_steps": 8,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 0.9,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.4,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e89edc948a66be545829a5d1855c1e553d2a7a1c4e1714220462f3f5c9218c5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965e3f1e9f20bc9c26f1a05abf166feed68334b278021ca5dda2d81f45e210ca
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6335c61f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6335c6280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6335c6310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6335c63a0>", "_build": "<function ActorCriticPolicy._build at 0x7fa6335c6430>", "forward": "<function ActorCriticPolicy.forward at 0x7fa6335c64c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6335c6550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6335c65e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa6335c6670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6335c6700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6335c6790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6335c6820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa6335bdba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674928883441169933, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANnqq71kl1C/xRfaPrenAUB81QU+zRXnPp+vOT9FyeU9F3daPw0vuj9h5yc/VsHfPuFlH77aZni/t+rFvqloRL7LW38/fTy7v7+IBD/bTuM+CaVdv39Y1TyLxnG/OZc3PmbIEj+ijC/AJjXIPsaq8b93Niw/5yCiv1cxSz4u+8U/Xoutv078P7/mRVw+6LubvzDjaD+HWBS9JytSP9a/v7+s0qq/PuSgPzhQGr+YyuU+Px6nPezg+z4flN4+SMitvktfIL9LfeI/lU7NvhOO8j9myBI/oowvwCY1yD7GqvG/W8dEPicrNL8cteo+Lsm3PzW2M75Lofs957YIv1I/lj/aPP0+Nt4jvb6lXr9wDjE9L2GCv+tZzz9G466+Ok3/PvxjNz+LtjNAoP2Yv7Lxzj7KWl2/M8zMvdrLET8WgQY/zD3fv+aouj6LqyPAa5cHP9tYPT/ZHPW+x4T+Pv7MGEAWoqI/MvO7PTVbCr9hkVS/OKUpPy0lOcBZQD6/0lknPznuOD2C/Ae/ZLGhPjE9iz/uR7c/ZrMkwIHtor+ClE0+v8tov1fexcBGdMY/Cks2v8w937/mqLo+i6sjwGuXBz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADGzew0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxnkUvQAAAAAWndm/AAAAAECIPb0AAAAA7w3aPwAAAADQXeU8AAAAAANy6D8AAAAA3tITOwAAAAAEKP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd8qKtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLM1hrwAAAAAuIDvvwAAAADke429AAAAAIIN/j8AAAAAgMC5vQAAAACTHP8/AAAAAATjAD0AAAAAG4PbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPTz5TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxDRq8AAAAAIjs8r8AAAAA4+AGPgAAAAB/ifs/AAAAABYVaT0AAAAA/APfPwAAAABkQMO9AAAAAKoD9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKKVG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsHd5PQAAAABRXeG/AAAAANP0GL0AAAAAvUH6PwAAAACgcQm9AAAAAImrAEAAAAAAagw2OwAAAADeTuO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8KCQkona6MAWyUTegDjAF0lEdAqavkQRPGhnV9lChoBkdAn9d3Wz4UOGgHTegDaAhHQKmtXxhlUZN1fZQoaAZHQJ6fpLi++M9oB03oA2gIR0Cprw6V2Rq5dX2UKGgGR0Cer+I42jwhaAdN6ANoCEdAqba+B4D9wXV9lChoBkdAnw0DjNpudmgHTegDaAhHQKm38gTyrgh1fZQoaAZHQJ6W9syi22JoB03oA2gIR0CpuYoAGSpzdX2UKGgGR0Cfp1189fTkaAdN6ANoCEdAqbsE2pAD73V9lChoBkdAnUL09ECvHWgHTegDaAhHQKnC01pCa7V1fZQoaAZHQJ41i0+kgwJoB03oA2gIR0Cpw+1YyO7ydX2UKGgGR0CehZMGX5WSaAdN6ANoCEdAqcVFnRLK3nV9lChoBkdAnxEKyKNyYGgHTegDaAhHQKnG1jKgZjx1fZQoaAZHQJ6h73UQTVVoB03oA2gIR0CpzrT6JqIrdX2UKGgGR0Ceaur92ovSaAdN6ANoCEdAqc/NJ8OTaHV9lChoBkdAnkmzIzWPLmgHTegDaAhHQKnRGxzq8lJ1fZQoaAZHQJ4q9NnGsFNoB03oA2gIR0Cp0qOU2UB5dX2UKGgGR0CeeOXFLnLaaAdN6ANoCEdAqdpbh3qzJXV9lChoBkdAn7Mg8wHqvGgHTegDaAhHQKnbdLmp2ll1fZQoaAZHQJ5oFNbkfcNoB03oA2gIR0Cp3NShi9ZidX2UKGgGR0CeyYmOEM9baAdN6ANoCEdAqd5U4ku6E3V9lChoBkdAnisnJo0yg2gHTegDaAhHQKnmYiMYMv11fZQoaAZHQKAeJDXvphZoB03oA2gIR0Cp54oh6jWTdX2UKGgGR0CeW0ns9jgAaAdN6ANoCEdAqej3VoYek3V9lChoBkdAn9jvnOjZc2gHTegDaAhHQKnq2xSHdoF1fZQoaAZHQJ+P1LRKHwhoB03oA2gIR0Cp8xqNQ0oCdX2UKGgGR0CfUV3+MqBmaAdN6ANoCEdAqfRCEeyRjnV9lChoBkdAn0vSxiXpn2gHTegDaAhHQKn1t6w+t8x1fZQoaAZHQJ4+lnkDIR1oB03oA2gIR0Cp91HUDuBudX2UKGgGR0CfQy5ZKWcCaAdN6ANoCEdAqf87vuw5enV9lChoBkdAnvIONo8IRmgHTegDaAhHQKoAX2mHgxd1fZQoaAZHQJ/FJk7OmixoB03oA2gIR0CqAcBrnDBNdX2UKGgGR0Ce4eNL127naAdN6ANoCEdAqgNM7QswtnV9lChoBkdAVD+0a6z3RGgHS9loCEdAqgXWbNKRMnV9lChoBkdAnjIcRUWEb2gHTegDaAhHQKoLBYs/Y8N1fZQoaAZHQJ6tFDKHO8loB03oA2gIR0CqDCZz5oGqdX2UKGgGR0CgG8zisGPgaAdN6ANoCEdAqg2Xied073V9lChoBkdAnfboeLehwmgHTegDaAhHQKoR5p/wy7B1fZQoaAZHQIQC1nuiN85oB03oA2gIR0CqF0ytmthedX2UKGgGR0CenS+qioKlaAdN6ANoCEdAqhhvsqril3V9lChoBkdAnV5AqVhTfmgHTegDaAhHQKoZ24vvjOt1fZQoaAZHQJchDHHWBjFoB03oA2gIR0CqHghOpKjBdX2UKGgGR0CaiFc4HX2/aAdN6ANoCEdAqiNl6eGwinV9lChoBkdAnnoWGyon8mgHTegDaAhHQKokjYhdMTN1fZQoaAZHQJ2JbXI2fkFoB03oA2gIR0CqJfSde6ZqdX2UKGgGR0CYrQ9t/FzdaAdN6ANoCEdAqiolRk3CK3V9lChoBkdAnitsZHd43WgHTegDaAhHQKovaHck+ot1fZQoaAZHQJ1ot9Ujs2NoB03oA2gIR0CqMIDxCpm3dX2UKGgGR0CfJqpdKNADaAdN6ANoCEdAqjHih6By0nV9lChoBkdAni3mlANXo2gHTegDaAhHQKo2Cr5qM3t1fZQoaAZHQJ0QVz4k/r1oB03oA2gIR0CqO2YjSofkdX2UKGgGR0CeuRDD0lJIaAdN6ANoCEdAqjx8yP+4snV9lChoBkdAnpCD+JgssmgHTegDaAhHQKo910xM3611fZQoaAZHQJ5xlTefqX5oB03oA2gIR0CqQezGPxQSdX2UKGgGR0CfypncL0BfaAdN6ANoCEdAqkccPatcOnV9lChoBkdAntQMfigkC2gHTegDaAhHQKpIN2saKk51fZQoaAZHQJ6MVu0kWyloB03oA2gIR0CqSZpVsDW9dX2UKGgGR0CeOdZ26kIpaAdN6ANoCEdAqk2x39rGi3V9lChoBkdAnh5ocR15jmgHTegDaAhHQKpS/AXVLBd1fZQoaAZHQJxOxdKNAC5oB03oA2gIR0CqVB8oH9m6dX2UKGgGR0Ce8ErPdEb6aAdN6ANoCEdAqlV7htLteHV9lChoBkdAnTZoyfthNWgHTegDaAhHQKpZkWv8qF11fZQoaAZHQJ2siuKXOW1oB03oA2gIR0CqXte0Xxe+dX2UKGgGR0CeysekpI+XaAdN6ANoCEdAql/tSOzY3HV9lChoBkdAnEy7SqlxfmgHTegDaAhHQKphTC3PRiR1fZQoaAZHQJ19N/J/5L1oB03oA2gIR0CqZZ18CxNZdX2UKGgGR0CgB3YfGMn7aAdN6ANoCEdAqmsP2Xb/O3V9lChoBkdAm65pyp71I2gHTegDaAhHQKpsLrYXfqJ1fZQoaAZHQJ6Wgl7dBSloB03oA2gIR0CqbZLpRoAXdX2UKGgGR0Cepf9W6shgaAdN6ANoCEdAqnGiV6eGwnV9lChoBkdAm6H6V6eGwmgHTegDaAhHQKp28JLM9r51fZQoaAZHQJ8EwOBlMAZoB03oA2gIR0CqeA8FY+0PdX2UKGgGR0CeW2/LDAJtaAdN6ANoCEdAqnlsvkBCD3V9lChoBkdAnNJK/Zdv9GgHTegDaAhHQKp9kbMotth1fZQoaAZHQJwkTJfYzzpoB03oA2gIR0CqguF3pwCKdX2UKGgGR0CEvegW8AaOaAdN6ANoCEdAqoP/s7dSEXV9lChoBkdAnZdkH+qBE2gHTegDaAhHQKqFXfmcOLB1fZQoaAZHQJ05ur2g399oB03oA2gIR0CqiZIAGSpzdX2UKGgGR0Cd/fUxVQyiaAdN6ANoCEdAqo7nUONHY3V9lChoBkdAnfaHJ1aGH2gHTegDaAhHQKqQCglF+d91fZQoaAZHQJ68gxvegthoB03oA2gIR0CqkXyidrftdX2UKGgGR0Cd7JdeY2KmaAdN6ANoCEdAqpWe9tdiUnV9lChoBkdAnJpAMtsen2gHTegDaAhHQKqaynUlRgt1fZQoaAZHQJ2NpZRsMy9oB03oA2gIR0Cqm+49ovi+dX2UKGgGR0CfYRNFjNILaAdN6ANoCEdAqp1PIjnmrHV9lChoBkdAnLktFKCg9WgHTegDaAhHQKqhw4JeE7J1fZQoaAZHQJ5L8hQm/nJoB03oA2gIR0CqqGh3qzJIdX2UKGgGR0CdPBg6ltTDaAdN6ANoCEdAqqoxWT5ft3V9lChoBkdAnbscXFcY7GgHTegDaAhHQKqsdk/bCaZ1fZQoaAZHQJ6fQkKNQ0poB03oA2gIR0CqsXA2qDK6dX2UKGgGR0Cdyqlgc94eaAdN6ANoCEdAqratY+0PYnV9lChoBkdAnxocV1wHaGgHTegDaAhHQKq3xva11GN1fZQoaAZHQJ69Cv6j325oB03oA2gIR0CquTIikftAdX2UKGgGR0CeptJ1q33IaAdN6ANoCEdAqr1z4xk/bHV9lChoBkdAnuDeNxVAA2gHTegDaAhHQKrCuNAC4jN1fZQoaAZHQJ7hN1U2kzpoB03oA2gIR0Cqw9uMVDa5dX2UKGgGR0Ce+TpBX0XhaAdN6ANoCEdAqsU4bbUPQXV9lChoBkdAn0i1RxcVxmgHTegDaAhHQKrJbQk5ZKZ1fZQoaAZHQJ8Ah97WuoxoB03oA2gIR0CqzsGfXf65dX2UKGgGR0Ceyf8jzI3jaAdN6ANoCEdAqs/bURWcSXV9lChoBkdAnvRZvUBnz2gHTegDaAhHQKrROjmCAc11fZQoaAZHQJ6ZZjurp7loB03oA2gIR0Cq1Vz8P4EfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:617d1764d4fd693daa32c72ba832c9412c96ddd4bdbfe93ffecb4528d0bf8dd0
3
+ size 1026110
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1950.0637703246437, "std_reward": 74.7694762338878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-28T18:53:49.189593"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7153592b82ecfd515880a97229c060664ee91be1be71e55e83eab5aa7bf56b2
3
+ size 2136