Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: flan-t5-base-v3-edos_labelled_aggregated
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# flan-t5-base-v3-edos_labelled_aggregated
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0663
|
20 |
+
- Rouge1: 95.8792
|
21 |
+
- Rouge2: 71.25
|
22 |
+
- Rougel: 95.875
|
23 |
+
- Rougelsum: 95.8792
|
24 |
+
- Gen Len: 4.7903
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 5
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
55 |
+
| 0.0822 | 1.0 | 1750 | 0.0688 | 95.8375 | 71.9 | 95.8417 | 95.8333 | 4.805 |
|
56 |
+
| 0.0663 | 2.0 | 3500 | 0.0663 | 95.8792 | 71.25 | 95.875 | 95.8792 | 4.7903 |
|
57 |
+
| 0.0536 | 3.0 | 5250 | 0.0764 | 95.65 | 69.3 | 95.65 | 95.6667 | 4.758 |
|
58 |
+
| 0.0486 | 4.0 | 7000 | 0.0849 | 95.8333 | 69.925 | 95.8167 | 95.8333 | 4.7657 |
|
59 |
+
| 0.0467 | 5.0 | 8750 | 0.0946 | 95.825 | 69.8 | 95.8083 | 95.825 | 4.7635 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.28.1
|
65 |
+
- Pytorch 2.0.0+cu118
|
66 |
+
- Datasets 2.12.0
|
67 |
+
- Tokenizers 0.13.3
|