File size: 11,371 Bytes
843b8ec
f80fc4d
843b8ec
 
 
 
 
 
 
f80fc4d
 
843b8ec
 
 
 
 
 
 
 
 
 
2668c69
843b8ec
2668c69
 
 
 
 
843b8ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce2e85
 
2668c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843b8ec
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
base_model: haryoaw/scenario-TCR-NER_data-univner_full
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-kd-scr-ner-full_data-univner_full44
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-kd-scr-ner-full_data-univner_full44

This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1033
- Precision: 0.6036
- Recall: 0.5441
- F1: 0.5723
- Accuracy: 0.9593

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.8555        | 0.2910  | 500   | 2.5101          | 0.1888    | 0.0407 | 0.0669 | 0.9233   |
| 2.1564        | 0.5821  | 1000  | 2.1629          | 0.2303    | 0.1529 | 0.1838 | 0.9272   |
| 1.9176        | 0.8731  | 1500  | 2.0551          | 0.2484    | 0.1326 | 0.1729 | 0.9290   |
| 1.7645        | 1.1641  | 2000  | 1.9667          | 0.2914    | 0.1539 | 0.2015 | 0.9319   |
| 1.6699        | 1.4552  | 2500  | 1.8455          | 0.2770    | 0.2391 | 0.2566 | 0.9342   |
| 1.5836        | 1.7462  | 3000  | 1.8413          | 0.3525    | 0.2388 | 0.2847 | 0.9377   |
| 1.4981        | 2.0373  | 3500  | 1.6842          | 0.3698    | 0.2897 | 0.3249 | 0.9398   |
| 1.3481        | 2.3283  | 4000  | 1.6502          | 0.3867    | 0.3320 | 0.3573 | 0.9405   |
| 1.3432        | 2.6193  | 4500  | 1.6815          | 0.3763    | 0.3334 | 0.3536 | 0.9382   |
| 1.2954        | 2.9104  | 5000  | 1.5667          | 0.4099    | 0.3443 | 0.3742 | 0.9431   |
| 1.1925        | 3.2014  | 5500  | 1.5220          | 0.4337    | 0.3594 | 0.3931 | 0.9441   |
| 1.1588        | 3.4924  | 6000  | 1.5354          | 0.4016    | 0.3821 | 0.3916 | 0.9428   |
| 1.107         | 3.7835  | 6500  | 1.4844          | 0.4572    | 0.3718 | 0.4101 | 0.9456   |
| 1.0738        | 4.0745  | 7000  | 1.4503          | 0.4181    | 0.4041 | 0.4110 | 0.9465   |
| 0.9979        | 4.3655  | 7500  | 1.4415          | 0.4712    | 0.3787 | 0.4199 | 0.9472   |
| 0.9833        | 4.6566  | 8000  | 1.4303          | 0.4696    | 0.4158 | 0.4411 | 0.9475   |
| 0.9564        | 4.9476  | 8500  | 1.4136          | 0.4310    | 0.4250 | 0.4280 | 0.9481   |
| 0.8779        | 5.2386  | 9000  | 1.3971          | 0.4514    | 0.4465 | 0.4489 | 0.9495   |
| 0.8511        | 5.5297  | 9500  | 1.3609          | 0.4661    | 0.4161 | 0.4397 | 0.9495   |
| 0.849         | 5.8207  | 10000 | 1.3403          | 0.5161    | 0.4224 | 0.4646 | 0.9508   |
| 0.8182        | 6.1118  | 10500 | 1.3515          | 0.4611    | 0.4581 | 0.4596 | 0.9507   |
| 0.76          | 6.4028  | 11000 | 1.3629          | 0.4871    | 0.4484 | 0.4670 | 0.9515   |
| 0.7494        | 6.6938  | 11500 | 1.3188          | 0.4907    | 0.4812 | 0.4859 | 0.9526   |
| 0.7363        | 6.9849  | 12000 | 1.3117          | 0.4692    | 0.4425 | 0.4555 | 0.9518   |
| 0.6894        | 7.2759  | 12500 | 1.3309          | 0.5193    | 0.4308 | 0.4709 | 0.9526   |
| 0.6688        | 7.5669  | 13000 | 1.3295          | 0.5067    | 0.4526 | 0.4781 | 0.9529   |
| 0.6628        | 7.8580  | 13500 | 1.2883          | 0.5212    | 0.4920 | 0.5062 | 0.9542   |
| 0.6274        | 8.1490  | 14000 | 1.2968          | 0.5284    | 0.4878 | 0.5073 | 0.9544   |
| 0.6066        | 8.4400  | 14500 | 1.2572          | 0.5216    | 0.4942 | 0.5075 | 0.9543   |
| 0.6126        | 8.7311  | 15000 | 1.2623          | 0.5105    | 0.5167 | 0.5136 | 0.9548   |
| 0.5929        | 9.0221  | 15500 | 1.2700          | 0.5223    | 0.4940 | 0.5077 | 0.9548   |
| 0.5614        | 9.3132  | 16000 | 1.2609          | 0.5307    | 0.5054 | 0.5177 | 0.9552   |
| 0.5557        | 9.6042  | 16500 | 1.2618          | 0.5590    | 0.4766 | 0.5145 | 0.9552   |
| 0.5526        | 9.8952  | 17000 | 1.2479          | 0.5451    | 0.4975 | 0.5202 | 0.9556   |
| 0.526         | 10.1863 | 17500 | 1.2370          | 0.5432    | 0.5211 | 0.5320 | 0.9566   |
| 0.5102        | 10.4773 | 18000 | 1.2283          | 0.5435    | 0.5232 | 0.5331 | 0.9563   |
| 0.5163        | 10.7683 | 18500 | 1.2373          | 0.5523    | 0.5279 | 0.5398 | 0.9562   |
| 0.4977        | 11.0594 | 19000 | 1.2457          | 0.5610    | 0.5028 | 0.5303 | 0.9564   |
| 0.4829        | 11.3504 | 19500 | 1.2389          | 0.5677    | 0.5268 | 0.5465 | 0.9572   |
| 0.4692        | 11.6414 | 20000 | 1.2132          | 0.5599    | 0.5198 | 0.5391 | 0.9570   |
| 0.4749        | 11.9325 | 20500 | 1.2180          | 0.5531    | 0.5377 | 0.5453 | 0.9565   |
| 0.4533        | 12.2235 | 21000 | 1.2167          | 0.5562    | 0.5193 | 0.5371 | 0.9569   |
| 0.4446        | 12.5146 | 21500 | 1.2015          | 0.5489    | 0.5331 | 0.5409 | 0.9568   |
| 0.447         | 12.8056 | 22000 | 1.2149          | 0.5598    | 0.5258 | 0.5422 | 0.9566   |
| 0.4394        | 13.0966 | 22500 | 1.1838          | 0.5620    | 0.5376 | 0.5495 | 0.9570   |
| 0.4245        | 13.3877 | 23000 | 1.1928          | 0.5910    | 0.5269 | 0.5571 | 0.9582   |
| 0.4152        | 13.6787 | 23500 | 1.1844          | 0.5571    | 0.5331 | 0.5449 | 0.9570   |
| 0.4164        | 13.9697 | 24000 | 1.2065          | 0.5649    | 0.5304 | 0.5471 | 0.9572   |
| 0.397         | 14.2608 | 24500 | 1.1761          | 0.5779    | 0.5304 | 0.5531 | 0.9572   |
| 0.3952        | 14.5518 | 25000 | 1.1791          | 0.5659    | 0.5379 | 0.5515 | 0.9575   |
| 0.3973        | 14.8428 | 25500 | 1.2108          | 0.5868    | 0.5262 | 0.5548 | 0.9575   |
| 0.3906        | 15.1339 | 26000 | 1.1774          | 0.5684    | 0.5568 | 0.5625 | 0.9581   |
| 0.3781        | 15.4249 | 26500 | 1.1943          | 0.5897    | 0.5337 | 0.5603 | 0.9579   |
| 0.3723        | 15.7159 | 27000 | 1.1733          | 0.5578    | 0.5519 | 0.5548 | 0.9571   |
| 0.3705        | 16.0070 | 27500 | 1.1785          | 0.5711    | 0.5403 | 0.5553 | 0.9578   |
| 0.3563        | 16.2980 | 28000 | 1.1837          | 0.5760    | 0.5356 | 0.5551 | 0.9580   |
| 0.3542        | 16.5891 | 28500 | 1.1748          | 0.5918    | 0.5195 | 0.5533 | 0.9580   |
| 0.3603        | 16.8801 | 29000 | 1.1675          | 0.5874    | 0.5429 | 0.5643 | 0.9585   |
| 0.3518        | 17.1711 | 29500 | 1.1536          | 0.5918    | 0.5444 | 0.5671 | 0.9582   |
| 0.343         | 17.4622 | 30000 | 1.1422          | 0.5899    | 0.5333 | 0.5602 | 0.9583   |
| 0.3399        | 17.7532 | 30500 | 1.1619          | 0.5854    | 0.5258 | 0.5540 | 0.9581   |
| 0.3355        | 18.0442 | 31000 | 1.1395          | 0.5846    | 0.5423 | 0.5627 | 0.9584   |
| 0.3317        | 18.3353 | 31500 | 1.1426          | 0.5920    | 0.5465 | 0.5683 | 0.9584   |
| 0.3284        | 18.6263 | 32000 | 1.1357          | 0.5834    | 0.5496 | 0.5660 | 0.9590   |
| 0.3262        | 18.9173 | 32500 | 1.1450          | 0.5751    | 0.5403 | 0.5572 | 0.9583   |
| 0.3215        | 19.2084 | 33000 | 1.1376          | 0.5822    | 0.5500 | 0.5656 | 0.9587   |
| 0.3188        | 19.4994 | 33500 | 1.1514          | 0.5885    | 0.5442 | 0.5655 | 0.9587   |
| 0.3172        | 19.7905 | 34000 | 1.1390          | 0.5908    | 0.5416 | 0.5651 | 0.9585   |
| 0.3102        | 20.0815 | 34500 | 1.1351          | 0.5968    | 0.5367 | 0.5652 | 0.9587   |
| 0.3109        | 20.3725 | 35000 | 1.1356          | 0.5980    | 0.5392 | 0.5671 | 0.9586   |
| 0.3039        | 20.6636 | 35500 | 1.1291          | 0.6160    | 0.5187 | 0.5632 | 0.9587   |
| 0.307         | 20.9546 | 36000 | 1.1421          | 0.6046    | 0.5423 | 0.5718 | 0.9588   |
| 0.3043        | 21.2456 | 36500 | 1.1416          | 0.6020    | 0.5553 | 0.5777 | 0.9591   |
| 0.2936        | 21.5367 | 37000 | 1.1234          | 0.6004    | 0.5475 | 0.5727 | 0.9591   |
| 0.2984        | 21.8277 | 37500 | 1.1317          | 0.5894    | 0.5423 | 0.5649 | 0.9582   |
| 0.2986        | 22.1187 | 38000 | 1.1294          | 0.5961    | 0.5468 | 0.5704 | 0.9590   |
| 0.2885        | 22.4098 | 38500 | 1.1287          | 0.6151    | 0.5385 | 0.5742 | 0.9591   |
| 0.2897        | 22.7008 | 39000 | 1.1261          | 0.5981    | 0.5507 | 0.5734 | 0.9590   |
| 0.2897        | 22.9919 | 39500 | 1.1226          | 0.6051    | 0.5393 | 0.5703 | 0.9589   |
| 0.2857        | 23.2829 | 40000 | 1.1248          | 0.6082    | 0.5353 | 0.5694 | 0.9591   |
| 0.2819        | 23.5739 | 40500 | 1.1162          | 0.6230    | 0.5413 | 0.5793 | 0.9594   |
| 0.2867        | 23.8650 | 41000 | 1.1145          | 0.6027    | 0.5435 | 0.5716 | 0.9591   |
| 0.2796        | 24.1560 | 41500 | 1.1193          | 0.6025    | 0.5488 | 0.5744 | 0.9592   |
| 0.2758        | 24.4470 | 42000 | 1.1114          | 0.6073    | 0.5529 | 0.5788 | 0.9593   |
| 0.2779        | 24.7381 | 42500 | 1.1022          | 0.6036    | 0.5530 | 0.5772 | 0.9596   |
| 0.2782        | 25.0291 | 43000 | 1.1104          | 0.6155    | 0.5434 | 0.5772 | 0.9593   |
| 0.2723        | 25.3201 | 43500 | 1.1179          | 0.6139    | 0.5275 | 0.5674 | 0.9590   |
| 0.276         | 25.6112 | 44000 | 1.1176          | 0.6099    | 0.5445 | 0.5753 | 0.9592   |
| 0.2694        | 25.9022 | 44500 | 1.1124          | 0.6043    | 0.5386 | 0.5696 | 0.9591   |
| 0.2723        | 26.1932 | 45000 | 1.1185          | 0.6068    | 0.5421 | 0.5726 | 0.9591   |
| 0.2664        | 26.4843 | 45500 | 1.1090          | 0.6026    | 0.5455 | 0.5727 | 0.9592   |
| 0.2675        | 26.7753 | 46000 | 1.1077          | 0.6022    | 0.5571 | 0.5787 | 0.9594   |
| 0.2687        | 27.0664 | 46500 | 1.1059          | 0.6146    | 0.5353 | 0.5722 | 0.9593   |
| 0.2635        | 27.3574 | 47000 | 1.1013          | 0.5965    | 0.5535 | 0.5742 | 0.9590   |
| 0.2652        | 27.6484 | 47500 | 1.1031          | 0.6048    | 0.5340 | 0.5672 | 0.9588   |
| 0.2657        | 27.9395 | 48000 | 1.1053          | 0.6074    | 0.5471 | 0.5757 | 0.9595   |
| 0.2626        | 28.2305 | 48500 | 1.1000          | 0.6154    | 0.5452 | 0.5782 | 0.9595   |
| 0.2596        | 28.5215 | 49000 | 1.1055          | 0.6012    | 0.5497 | 0.5743 | 0.9594   |
| 0.2648        | 28.8126 | 49500 | 1.1101          | 0.6109    | 0.5454 | 0.5763 | 0.9593   |
| 0.2597        | 29.1036 | 50000 | 1.1020          | 0.6181    | 0.5455 | 0.5796 | 0.9595   |
| 0.2598        | 29.3946 | 50500 | 1.1045          | 0.608     | 0.5483 | 0.5766 | 0.9592   |
| 0.2577        | 29.6857 | 51000 | 1.1024          | 0.6052    | 0.5559 | 0.5795 | 0.9593   |
| 0.2622        | 29.9767 | 51500 | 1.1033          | 0.6036    | 0.5441 | 0.5723 | 0.9593   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1