haryoaw commited on
Commit
c95fd8b
1 Parent(s): 87569cc

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +100 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_full
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-scr-ner-full_data-univner_full66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-scr-ner-full_data-univner_full66
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1213
25
+ - Precision: 0.8519
26
+ - Recall: 0.8637
27
+ - F1: 0.8577
28
+ - Accuracy: 0.9843
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0089 | 0.2910 | 500 | 0.0854 | 0.8477 | 0.8498 | 0.8488 | 0.9839 |
60
+ | 0.0113 | 0.5821 | 1000 | 0.0804 | 0.8488 | 0.8660 | 0.8573 | 0.9846 |
61
+ | 0.0106 | 0.8731 | 1500 | 0.0797 | 0.8506 | 0.8665 | 0.8585 | 0.9845 |
62
+ | 0.0094 | 1.1641 | 2000 | 0.0869 | 0.8584 | 0.8622 | 0.8603 | 0.9847 |
63
+ | 0.0081 | 1.4552 | 2500 | 0.0932 | 0.8417 | 0.8664 | 0.8539 | 0.9839 |
64
+ | 0.0093 | 1.7462 | 3000 | 0.0842 | 0.8416 | 0.8673 | 0.8543 | 0.9842 |
65
+ | 0.0075 | 2.0373 | 3500 | 0.0912 | 0.8355 | 0.8691 | 0.8520 | 0.9838 |
66
+ | 0.0061 | 2.3283 | 4000 | 0.0825 | 0.8491 | 0.8518 | 0.8505 | 0.9842 |
67
+ | 0.007 | 2.6193 | 4500 | 0.0914 | 0.8494 | 0.8569 | 0.8531 | 0.9845 |
68
+ | 0.0072 | 2.9104 | 5000 | 0.0940 | 0.8481 | 0.8619 | 0.8550 | 0.9842 |
69
+ | 0.005 | 3.2014 | 5500 | 0.0922 | 0.8509 | 0.8588 | 0.8548 | 0.9845 |
70
+ | 0.0051 | 3.4924 | 6000 | 0.0985 | 0.8414 | 0.8600 | 0.8506 | 0.9839 |
71
+ | 0.0055 | 3.7835 | 6500 | 0.0878 | 0.8466 | 0.8517 | 0.8491 | 0.9843 |
72
+ | 0.0054 | 4.0745 | 7000 | 0.1042 | 0.8587 | 0.8674 | 0.8630 | 0.9850 |
73
+ | 0.0045 | 4.3655 | 7500 | 0.0981 | 0.8534 | 0.8639 | 0.8586 | 0.9841 |
74
+ | 0.0054 | 4.6566 | 8000 | 0.1017 | 0.8557 | 0.8665 | 0.8611 | 0.9849 |
75
+ | 0.0046 | 4.9476 | 8500 | 0.1031 | 0.8396 | 0.8634 | 0.8513 | 0.9834 |
76
+ | 0.0041 | 5.2386 | 9000 | 0.1015 | 0.8475 | 0.8603 | 0.8539 | 0.9842 |
77
+ | 0.0039 | 5.5297 | 9500 | 0.1053 | 0.8500 | 0.8628 | 0.8564 | 0.9846 |
78
+ | 0.0037 | 5.8207 | 10000 | 0.1113 | 0.8478 | 0.8654 | 0.8565 | 0.9845 |
79
+ | 0.0045 | 6.1118 | 10500 | 0.1221 | 0.8432 | 0.8714 | 0.8571 | 0.9841 |
80
+ | 0.0041 | 6.4028 | 11000 | 0.1001 | 0.8518 | 0.8639 | 0.8578 | 0.9844 |
81
+ | 0.0031 | 6.6938 | 11500 | 0.1068 | 0.8564 | 0.8632 | 0.8598 | 0.9846 |
82
+ | 0.0037 | 6.9849 | 12000 | 0.1108 | 0.8450 | 0.8613 | 0.8531 | 0.9841 |
83
+ | 0.0027 | 7.2759 | 12500 | 0.1184 | 0.8463 | 0.8647 | 0.8554 | 0.9838 |
84
+ | 0.0031 | 7.5669 | 13000 | 0.1205 | 0.8460 | 0.8611 | 0.8535 | 0.9837 |
85
+ | 0.0031 | 7.8580 | 13500 | 0.1132 | 0.8486 | 0.8719 | 0.8601 | 0.9845 |
86
+ | 0.003 | 8.1490 | 14000 | 0.1104 | 0.8440 | 0.8600 | 0.8519 | 0.9840 |
87
+ | 0.0021 | 8.4400 | 14500 | 0.1214 | 0.8529 | 0.8469 | 0.8499 | 0.9838 |
88
+ | 0.0029 | 8.7311 | 15000 | 0.1154 | 0.8408 | 0.8559 | 0.8483 | 0.9837 |
89
+ | 0.0028 | 9.0221 | 15500 | 0.1117 | 0.8460 | 0.8686 | 0.8571 | 0.9845 |
90
+ | 0.0021 | 9.3132 | 16000 | 0.1253 | 0.8347 | 0.8694 | 0.8517 | 0.9836 |
91
+ | 0.0018 | 9.6042 | 16500 | 0.1239 | 0.8487 | 0.8663 | 0.8574 | 0.9844 |
92
+ | 0.0021 | 9.8952 | 17000 | 0.1213 | 0.8519 | 0.8637 | 0.8577 | 0.9843 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.44.2
98
+ - Pytorch 2.1.1+cu121
99
+ - Datasets 2.14.5
100
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.647887323943662, "recall": 0.9387755102040817, "f1": 0.7666666666666667, "accuracy": 0.9768339768339769}, "en_pud": {"precision": 0.8066985645933015, "recall": 0.7841860465116279, "f1": 0.7952830188679246, "accuracy": 0.9802134491877598}, "de_pud": {"precision": 0.7927844588344126, "recall": 0.8248315688161694, "f1": 0.8084905660377358, "accuracy": 0.9777319394308752}, "pt_pud": {"precision": 0.8751099384344767, "recall": 0.905368516833485, "f1": 0.8899821109123435, "accuracy": 0.9885077113683941}, "ru_pud": {"precision": 0.7248628884826326, "recall": 0.7654440154440154, "f1": 0.7446009389671362, "accuracy": 0.9741152157065358}, "sv_pud": {"precision": 0.8679802955665025, "recall": 0.8561710398445093, "f1": 0.8620352250489237, "accuracy": 0.9866848395890123}, "tl_trg": {"precision": 0.9565217391304348, "recall": 0.9565217391304348, "f1": 0.9565217391304348, "accuracy": 0.997275204359673}, "tl_ugnayan": {"precision": 0.6666666666666666, "recall": 0.7272727272727273, "f1": 0.6956521739130435, "accuracy": 0.9790337283500455}, "zh_gsd": {"precision": 0.8480519480519481, "recall": 0.8513689700130378, "f1": 0.8497072218607677, "accuracy": 0.9779387279387279}, "zh_gsdsimp": {"precision": 0.8434670116429496, "recall": 0.854521625163827, "f1": 0.8489583333333334, "accuracy": 0.9784382284382285}, "hr_set": {"precision": 0.918580375782881, "recall": 0.9408410548823949, "f1": 0.9295774647887324, "accuracy": 0.9909727947238253}, "da_ddt": {"precision": 0.8844339622641509, "recall": 0.8389261744966443, "f1": 0.8610792192881745, "accuracy": 0.9892247829991021}, "en_ewt": {"precision": 0.8191287878787878, "recall": 0.7950367647058824, "f1": 0.8069029850746269, "accuracy": 0.9801569908754034}, "pt_bosque": {"precision": 0.8886118038237739, "recall": 0.8798353909465021, "f1": 0.8842018196856908, "accuracy": 0.9883350239095783}, "sr_set": {"precision": 0.9558998808104887, "recall": 0.9468713105076741, "f1": 0.9513641755634639, "accuracy": 0.9911566412748446}, "sk_snk": {"precision": 0.8399558498896247, "recall": 0.8316939890710382, "f1": 0.8358045030203185, "accuracy": 0.9747958542713567}, "sv_talbanken": {"precision": 0.8984771573604061, "recall": 0.9030612244897959, "f1": 0.900763358778626, "accuracy": 0.9980860774402512}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:698d9787a2491c98c9c5a091158f8434c70978082594c3cb294fa56d7cb301e7
3
+ size 1109857804
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30d1de551ed75db9cc8b86cf55b5d2c07888f8c39944d8eaf31b5e336ad71546
3
+ size 5304