Upload 2 files
Browse filesadded convert script and test lora
- convert_lora.py +164 -0
- wf_0400.safetensors +3 -0
convert_lora.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from safetensors.torch import load_file, save_file
|
8 |
+
|
9 |
+
|
10 |
+
def convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict):
|
11 |
+
converted_state_dict = {k: diffusers_state_dict.pop(k) for k in list(diffusers_state_dict.keys())}
|
12 |
+
|
13 |
+
TRANSFORMER_KEYS_RENAME_DICT = {
|
14 |
+
"img_in": "x_embedder",
|
15 |
+
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
|
16 |
+
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
|
17 |
+
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
|
18 |
+
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
|
19 |
+
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
|
20 |
+
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
|
21 |
+
".double_blocks": ".transformer_blocks",
|
22 |
+
".single_blocks": ".single_transformer_blocks",
|
23 |
+
"img_attn_q_norm": "attn.norm_q",
|
24 |
+
"img_attn_k_norm": "attn.norm_k",
|
25 |
+
"img_attn_proj": "attn.to_out.0",
|
26 |
+
"txt_attn_q_norm": "attn.norm_added_q",
|
27 |
+
"txt_attn_k_norm": "attn.norm_added_k",
|
28 |
+
"txt_attn_proj": "attn.to_add_out",
|
29 |
+
"img_mod.linear": "norm1.linear",
|
30 |
+
"img_norm1": "norm1.norm",
|
31 |
+
"img_norm2": "norm2",
|
32 |
+
"txt_mlp": "ff_context",
|
33 |
+
"img_mlp": "ff",
|
34 |
+
"txt_mod.linear": "norm1_context.linear",
|
35 |
+
"txt_norm1": "norm1.norm",
|
36 |
+
"txt_norm2": "norm2_context",
|
37 |
+
"modulation.linear": "norm.linear",
|
38 |
+
"pre_norm": "norm.norm",
|
39 |
+
"final_layer.norm_final": "norm_out.norm",
|
40 |
+
"final_layer.linear": "proj_out",
|
41 |
+
# "linear2": "proj_out",
|
42 |
+
"fc1": "net.0.proj",
|
43 |
+
"fc2": "net.2",
|
44 |
+
"input_embedder": "proj_in",
|
45 |
+
# txt_in
|
46 |
+
"individual_token_refiner.blocks": "token_refiner.refiner_blocks",
|
47 |
+
"final_layer.adaLN_modulation.1": "norm_out.linear",
|
48 |
+
# "t_embedder.mlp.0": "time_text_embed.timestep_embedder.linear_1",
|
49 |
+
# "t_embedder.mlp.2": "time_text_embed.timestep_embedder.linear_2",
|
50 |
+
"c_embedder": "time_text_embed.text_embedder",
|
51 |
+
"txt_in": "context_embedder",
|
52 |
+
# "mlp": "ff",
|
53 |
+
}
|
54 |
+
|
55 |
+
TRANSFORMER_KEYS_RENAME_DICT_REVERSE = {v: k for k, v in TRANSFORMER_KEYS_RENAME_DICT.items()}
|
56 |
+
|
57 |
+
for key in list(converted_state_dict.keys()):
|
58 |
+
if "norm_out.linear" in key:
|
59 |
+
weight = converted_state_dict.pop(key)
|
60 |
+
scale, shift = weight.chunk(2, dim=0)
|
61 |
+
new_weight = torch.cat([shift, scale], dim=0)
|
62 |
+
converted_state_dict[key] = new_weight
|
63 |
+
|
64 |
+
if "to_q" in key:
|
65 |
+
if "single_transformer_blocks" in key:
|
66 |
+
to_q = converted_state_dict.pop(key)
|
67 |
+
to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
|
68 |
+
to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
|
69 |
+
to_out = converted_state_dict.pop(key.replace("attn.to_q", "proj_mlp"))
|
70 |
+
rename_attn_key = "linear1"
|
71 |
+
if "lora_A" in key:
|
72 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
|
73 |
+
else:
|
74 |
+
qkv_mlp = torch.cat([to_q, to_k, to_v, to_out], dim=0)
|
75 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv_mlp
|
76 |
+
else:
|
77 |
+
to_q = converted_state_dict.pop(key)
|
78 |
+
to_k = converted_state_dict.pop(key.replace("to_q", "to_k"))
|
79 |
+
to_v = converted_state_dict.pop(key.replace("to_q", "to_v"))
|
80 |
+
if "token_refiner" in key:
|
81 |
+
rename_attn_key = "self_attn_qkv"
|
82 |
+
if "lora_A" in key:
|
83 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
|
84 |
+
else:
|
85 |
+
qkv = torch.cat([to_q, to_k, to_v], dim=0)
|
86 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
|
87 |
+
else:
|
88 |
+
rename_attn_key = "img_attn_qkv"
|
89 |
+
if "lora_A" in key:
|
90 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = to_q
|
91 |
+
else:
|
92 |
+
qkv = torch.cat([to_q, to_k, to_v], dim=0)
|
93 |
+
converted_state_dict[key.replace("attn.to_q", rename_attn_key)] = qkv
|
94 |
+
|
95 |
+
if "add_q_proj" in key:
|
96 |
+
to_q = converted_state_dict.pop(key)
|
97 |
+
to_k = converted_state_dict.pop(key.replace("add_q_proj", "add_k_proj"))
|
98 |
+
to_v = converted_state_dict.pop(key.replace("add_q_proj", "add_v_proj"))
|
99 |
+
rename_attn_key = "txt_attn_qkv"
|
100 |
+
if "lora_A" in key:
|
101 |
+
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = to_q
|
102 |
+
else:
|
103 |
+
qkv = torch.cat([to_q, to_k, to_v], dim=0)
|
104 |
+
converted_state_dict[key.replace("attn.add_q_proj", rename_attn_key)] = qkv
|
105 |
+
|
106 |
+
for key in list(converted_state_dict.keys()):
|
107 |
+
new_key = key[:]
|
108 |
+
if "token_refiner" in key and "attn.to_out.0" in new_key:
|
109 |
+
new_key = new_key.replace("attn.to_out.0", "self_attn_proj")
|
110 |
+
if "token_refiner" in key and "ff" in new_key:
|
111 |
+
new_key = new_key.replace("ff", "mlp")
|
112 |
+
if "token_refiner" in key and "norm_out.linear" in new_key:
|
113 |
+
new_key = new_key.replace("norm_out.linear", "adaLN_modulation.1")
|
114 |
+
if "context_embedder" in key and "time_text_embed.text_embedder.linear_1" in new_key:
|
115 |
+
new_key = new_key.replace("time_text_embed.text_embedder.linear_1", "c_embedder.linear_1")
|
116 |
+
if "context_embedder" in key and "time_text_embed.text_embedder.linear_2" in new_key:
|
117 |
+
new_key = new_key.replace("time_text_embed.text_embedder.linear_2", "c_embedder.linear_2")
|
118 |
+
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_1" in new_key:
|
119 |
+
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_1", "t_embedder.mlp.0")
|
120 |
+
if "context_embedder" in key and "time_text_embed.timestep_embedder.linear_2" in new_key:
|
121 |
+
new_key = new_key.replace("time_text_embed.timestep_embedder.linear_2", "t_embedder.mlp.2")
|
122 |
+
if "single_transformer_blocks" in key and "proj_out" in new_key:
|
123 |
+
new_key = new_key.replace("proj_out", "linear2")
|
124 |
+
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT_REVERSE.items():
|
125 |
+
new_key = new_key.replace(replace_key, rename_key)
|
126 |
+
converted_state_dict[new_key] = converted_state_dict.pop(key)
|
127 |
+
|
128 |
+
# Remove "transformer." prefix
|
129 |
+
for key in list(converted_state_dict.keys()):
|
130 |
+
if key.startswith("transformer."):
|
131 |
+
converted_state_dict[key[len("transformer."):]] = converted_state_dict.pop(key)
|
132 |
+
|
133 |
+
# Add back "diffusion_model." prefix
|
134 |
+
for key in list(converted_state_dict.keys()):
|
135 |
+
converted_state_dict[f"diffusion_model.{key}"] = converted_state_dict.pop(key)
|
136 |
+
|
137 |
+
return converted_state_dict
|
138 |
+
|
139 |
+
|
140 |
+
def get_args():
|
141 |
+
parser = argparse.ArgumentParser()
|
142 |
+
parser.add_argument("--ckpt_path", type=str, required=True)
|
143 |
+
parser.add_argument("--output_path_or_name", type=str, required=True)
|
144 |
+
return parser.parse_args()
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
args = get_args()
|
149 |
+
|
150 |
+
if args.ckpt_path.endswith(".pt"):
|
151 |
+
diffusers_state_dict = torch.load(args.ckpt_path, map_location="cpu", weights_only=True)
|
152 |
+
elif args.ckpt_path.endswith(".safetensors"):
|
153 |
+
diffusers_state_dict = load_file(args.ckpt_path)
|
154 |
+
|
155 |
+
original_format_state_dict = convert_diffusers_to_hunyuan_video_lora(diffusers_state_dict)
|
156 |
+
|
157 |
+
output_path_or_name = Path(args.output_path_or_name)
|
158 |
+
if output_path_or_name.as_posix().endswith(".safetensors"):
|
159 |
+
os.makedirs(output_path_or_name.parent, exist_ok=True)
|
160 |
+
save_file(original_format_state_dict, output_path_or_name)
|
161 |
+
else:
|
162 |
+
os.makedirs(output_path_or_name, exist_ok=True)
|
163 |
+
output_path_or_name = output_path_or_name / "pytorch_lora_weights.safetensors"
|
164 |
+
save_file(original_format_state_dict, output_path_or_name)
|
wf_0400.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:474982b3da41876ed4a28e252b4b58ea69e558f4019accef5c962e9876926a3b
|
3 |
+
size 374925440
|