havocy28 commited on
Commit
4d45415
·
verified ·
1 Parent(s): 7a340b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -6
README.md CHANGED
@@ -8,9 +8,8 @@ tags:
8
  - BERT
9
 
10
  widget:
11
- - text: "7 yo canine with history of vomiting intermittently after eating. EDUD
12
- normally, cPL positive."
13
- example_title: "Pancreatic Disorder"
14
  ---
15
 
16
 
@@ -38,9 +37,34 @@ VetBERT was further finetuned on a set of 5002 annotated clinical notes to class
38
  Load the model via the transformers library:
39
 
40
  ```
41
- from transformers import AutoTokenizer, AutoModel
42
- tokenizer = AutoTokenizer.from_pretrained("havocy28/VetBERTDx")
43
- model = AutoModel.from_pretrained("havocy28/VetBERTDx")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ```
45
 
46
  ## Citation
 
8
  - BERT
9
 
10
  widget:
11
+ - text: "Hx: 7 yo canine with history of vomiting intermittently since yesterday. No other concerns. Still eating and drinking normally. cPL negative."
12
+ example_title: "Enteropathy"
 
13
  ---
14
 
15
 
 
37
  Load the model via the transformers library:
38
 
39
  ```
40
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
41
+ import torch
42
+
43
+ # Load the tokenizer and model from the Hugging Face Hub
44
+ model_name = 'havocy28/VetBERTDx'
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
46
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
47
+
48
+ # Example text to classify
49
+ text = "Hx: 7 yo canine with history of vomiting intermittently since yesterday. No other concerns. Still eating and drinking normally. cPL negative."
50
+
51
+ # Encode the text and prepare inputs for the model
52
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
53
+
54
+ # Predict and compute softmax to get probabilities
55
+ with torch.no_grad():
56
+ logits = model(**inputs).logits
57
+ probabilities = torch.softmax(logits, dim=-1)
58
+
59
+ # Retrieve label mapping from model's configuration
60
+ label_map = model.config.id2label
61
+
62
+ # Combine labels and probabilities, and sort by probability in descending order
63
+ sorted_probs = sorted(((prob.item(), label_map[idx]) for idx, prob in enumerate(probabilities[0])), reverse=True, key=lambda x: x[0])
64
+
65
+ # Display sorted probabilities and labels
66
+ for prob, label in sorted_probs:
67
+ print(f"{label}: {prob:.4f}")
68
  ```
69
 
70
  ## Citation