--- library_name: transformers license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: mt5-base-qaqg-finetuned-SQuAD-id-sentence results: [] --- # mt5-base-qaqg-finetuned-SQuAD-id-sentence This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4176 - Rouge: {'rouge1': 0.431906438503008, 'rouge2': 0.25499026452104945, 'rougeL': 0.39204274842839615, 'rougeLsum': 0.39456014504144676} - Rouge1: 0.4319 - Rouge2: 0.2550 - Rougel: 0.3920 - Rougelsum: 0.3946 - Bleu: 0.2255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:------------------------------------------------------------------------------------------------------------------------------:|:------:|:------:|:------:|:---------:|:------:| | 1.8092 | 1.0 | 2000 | 1.5726 | {'rouge1': 0.38857764947308354, 'rouge2': 0.2144816356866815, 'rougeL': 0.34718290508264066, 'rougeLsum': 0.3491704618702567} | 0.3886 | 0.2145 | 0.3472 | 0.3492 | 0.2027 | | 1.448 | 2.0 | 4000 | 1.4578 | {'rouge1': 0.4201425066563658, 'rouge2': 0.24245589461633016, 'rougeL': 0.3801327577125928, 'rougeLsum': 0.38306624507182285} | 0.4201 | 0.2425 | 0.3801 | 0.3831 | 0.2179 | | 1.2703 | 3.0 | 6000 | 1.4241 | {'rouge1': 0.42984982575843933, 'rouge2': 0.2542816232928319, 'rougeL': 0.38888435744081745, 'rougeLsum': 0.39130709798526525} | 0.4298 | 0.2543 | 0.3889 | 0.3913 | 0.2251 | | 1.2228 | 4.0 | 8000 | 1.4314 | {'rouge1': 0.4293519247279466, 'rouge2': 0.2525711759038574, 'rougeL': 0.3885634471147471, 'rougeLsum': 0.3910623048069688} | 0.4294 | 0.2526 | 0.3886 | 0.3911 | 0.2240 | | 1.1391 | 5.0 | 10000 | 1.4176 | {'rouge1': 0.431906438503008, 'rouge2': 0.25499026452104945, 'rougeL': 0.39204274842839615, 'rougeLsum': 0.39456014504144676} | 0.4319 | 0.2550 | 0.3920 | 0.3946 | 0.2255 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0a0+f70bd71a48.nv24.06 - Datasets 2.21.0 - Tokenizers 0.19.1