hchcsuim commited on
Commit
b99f924
·
verified ·
1 Parent(s): ad47a2f

Model save

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.9835503925216681
29
  - name: Precision
30
  type: precision
31
- value: 0.9834235162758739
32
  - name: Recall
33
  type: recall
34
- value: 0.995767625231911
35
  - name: F1
36
  type: f1
37
- value: 0.9895570759812747
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0446
48
- - Accuracy: 0.9836
49
- - Precision: 0.9834
50
- - Recall: 0.9958
51
- - F1: 0.9896
52
  - Roc Auc: 0.9989
53
 
54
  ## Model description
@@ -83,7 +83,7 @@ The following hyperparameters were used during training:
83
 
84
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
85
  |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
86
- | 0.0406 | 0.9996 | 1377 | 0.0446 | 0.9836 | 0.9834 | 0.9958 | 0.9896 | 0.9989 |
87
 
88
 
89
  ### Framework versions
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.9825634160729682
29
  - name: Precision
30
  type: precision
31
+ value: 0.9818833850066437
32
  - name: Recall
33
  type: recall
34
+ value: 0.9961009972170687
35
  - name: F1
36
  type: f1
37
+ value: 0.9889410935150342
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0478
48
+ - Accuracy: 0.9826
49
+ - Precision: 0.9819
50
+ - Recall: 0.9961
51
+ - F1: 0.9889
52
  - Roc Auc: 0.9989
53
 
54
  ## Model description
 
83
 
84
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
85
  |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
86
+ | 0.0428 | 0.9996 | 1377 | 0.0478 | 0.9826 | 0.9819 | 0.9961 | 0.9889 | 0.9989 |
87
 
88
 
89
  ### Framework versions