Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- name: Precision
|
30 |
type: precision
|
31 |
-
value: 0.
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
-
value: 0.
|
35 |
- name: F1
|
36 |
type: f1
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Accuracy: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
- Roc Auc: 0.9989
|
53 |
|
54 |
## Model description
|
@@ -83,7 +83,7 @@ The following hyperparameters were used during training:
|
|
83 |
|
84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|
85 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
86 |
-
| 0.
|
87 |
|
88 |
|
89 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.9825634160729682
|
29 |
- name: Precision
|
30 |
type: precision
|
31 |
+
value: 0.9818833850066437
|
32 |
- name: Recall
|
33 |
type: recall
|
34 |
+
value: 0.9961009972170687
|
35 |
- name: F1
|
36 |
type: f1
|
37 |
+
value: 0.9889410935150342
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0478
|
48 |
+
- Accuracy: 0.9826
|
49 |
+
- Precision: 0.9819
|
50 |
+
- Recall: 0.9961
|
51 |
+
- F1: 0.9889
|
52 |
- Roc Auc: 0.9989
|
53 |
|
54 |
## Model description
|
|
|
83 |
|
84 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|
85 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
|
86 |
+
| 0.0428 | 0.9996 | 1377 | 0.0478 | 0.9826 | 0.9819 | 0.9961 | 0.9889 | 0.9989 |
|
87 |
|
88 |
|
89 |
### Framework versions
|