File size: 2,100 Bytes
a29d4d3 37b2dbd a29d4d3 37b2dbd a29d4d3 37b2dbd a29d4d3 37b2dbd a29d4d3 37b2dbd a29d4d3 642b837 a29d4d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-food-items-v1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9090909090909091
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-food-items-v1
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4524
- Accuracy: 0.9091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.1773 | 0.6579 | 100 | 0.7280 | 0.8473 |
| 0.0589 | 1.3158 | 200 | 0.5529 | 0.8873 |
| 0.043 | 1.9737 | 300 | 0.4524 | 0.9091 |
| 0.0022 | 2.6316 | 400 | 0.5150 | 0.8909 |
| 0.0018 | 3.2895 | 500 | 0.4925 | 0.9018 |
| 0.0017 | 3.9474 | 600 | 0.4941 | 0.9018 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|