File size: 2,076 Bytes
90e090a 4c7ef90 90e090a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- te
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- Sonal0205/telugu_whisper_asr
metrics:
- wer
model-index:
- name: Whisper Small te - heisenberg3376
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: telugu asr
type: Sonal0205/telugu_whisper_asr
args: 'config: te, split: test'
metrics:
- name: Wer
type: wer
value: 30.053507728894175
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small te - heisenberg3376
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [Sonal0205/telugu_whisper_asr](https://huggingface.co/datasets/Sonal0205/telugu_whisper_asr) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1082
- Wer: 30.0535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0923 | 1.0582 | 1000 | 0.1281 | 43.7277 |
| 0.0377 | 2.1164 | 2000 | 0.1060 | 35.0773 |
| 0.0151 | 3.1746 | 3000 | 0.1125 | 32.5505 |
| 0.0063 | 4.2328 | 4000 | 0.1082 | 30.0535 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|