File size: 3,352 Bytes
8d310e8 3c4dc4e ab2476b 6b9e8e7 71836b9 fff3de8 71836b9 fff3de8 71836b9 3c4dc4e 0156855 12b0f17 0156855 6adf011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: apache-2.0
---
# Chinese-Alpaca-2-7B
**This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.**
**Related models👇**
* Long context base models
* [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k)
* [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k)
* [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k)
* [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k)
* Base models
* [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b)
* [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b)
* [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b)
* [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b)
* Instruction/Chat models
* [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b)
* [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b)
* [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b)
* [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b)
# Description of Chinese-LLaMA-Alpaca-2
This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method.
The main contents of this project include:
* 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.
* 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data
* 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC
* 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc.
Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ziqingyang__chinese-alpaca-2-7b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 47.11 |
| ARC (25-shot) | 49.57 |
| HellaSwag (10-shot) | 72.62 |
| MMLU (5-shot) | 46.5 |
| TruthfulQA (0-shot) | 48.63 |
| Winogrande (5-shot) | 70.01 |
| GSM8K (5-shot) | 5.76 |
| DROP (3-shot) | 36.66 |
|