File size: 2,460 Bytes
4cd8445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: UBC-NLP/AraT5v2-base-1024
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: results_arat5-2_wiki
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results_arat5-2_wiki
This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.6421
- Rouge1: 0.0905
- Rouge2: 0.0
- Rougel: 0.0915
- Rougelsum: 0.0912
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 8.3962 | 0.9506 | 500 | 7.0927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7.072 | 1.9011 | 1000 | 7.0704 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7.0441 | 2.8517 | 1500 | 7.0627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7.0044 | 3.8023 | 2000 | 7.0205 | 0.0 | 0.0 | 0.0 | 0.0 | 16.9719 |
| 6.9461 | 4.7529 | 2500 | 6.8398 | 0.0896 | 0.0 | 0.0908 | 0.0904 | 17.7903 |
| 6.727 | 5.7034 | 3000 | 6.5676 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 18.8221 |
| 6.446 | 6.6540 | 3500 | 6.3711 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 18.8221 |
| 6.3054 | 7.6046 | 4000 | 5.9586 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 18.8933 |
| 5.8985 | 8.5551 | 4500 | 5.7386 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 |
| 5.8333 | 9.5057 | 5000 | 5.6421 | 0.0905 | 0.0 | 0.0915 | 0.0912 | 19.0 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|