File size: 10,865 Bytes
9c50feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: results_mt5_xl-_wiki
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results_mt5_xl-_wiki

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0048
- Rouge1: 0.1023
- Rouge2: 0.0125
- Rougel: 0.1022
- Rougelsum: 0.1019
- Gen Len: 18.9302

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 9.7309        | 0.1081 | 500   | 8.7752          | 0.0    | 0.0    | 0.0    | 0.0       | 19.0    |
| 8.2303        | 0.2161 | 1000  | 7.2210          | 0.0    | 0.0    | 0.0    | 0.0       | 19.0    |
| 7.2363        | 0.3242 | 1500  | 6.7270          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 7.0589        | 0.4322 | 2000  | 6.3511          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 6.7392        | 0.5403 | 2500  | 6.2383          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 6.716         | 0.6484 | 3000  | 6.2242          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 6.5459        | 0.7564 | 3500  | 6.1235          | 0.0112 | 0.0    | 0.0112 | 0.0112    | 19.0    |
| 6.3342        | 0.8645 | 4000  | 6.0783          | 0.0738 | 0.0    | 0.0736 | 0.0732    | 12.6417 |
| 6.2404        | 0.9726 | 4500  | 6.0705          | 0.0738 | 0.0    | 0.0736 | 0.0732    | 15.3982 |
| 6.1405        | 1.0806 | 5000  | 6.0811          | 0.0112 | 0.0    | 0.0112 | 0.0112    | 19.0    |
| 6.0387        | 1.1887 | 5500  | 5.8715          | 0.0112 | 0.0    | 0.0112 | 0.0112    | 18.951  |
| 5.7348        | 1.2967 | 6000  | 5.2644          | 0.0392 | 0.0    | 0.0392 | 0.0394    | 0.4314  |
| 5.2214        | 1.4048 | 6500  | 4.8743          | 0.0184 | 0.0    | 0.0184 | 0.0184    | 9.9584  |
| 4.9215        | 1.5129 | 7000  | 4.4677          | 0.0359 | 0.0    | 0.036  | 0.036     | 19.0    |
| 4.6441        | 1.6209 | 7500  | 4.0154          | 0.0738 | 0.0    | 0.0736 | 0.0732    | 19.0    |
| 4.2095        | 1.7290 | 8000  | 3.4679          | 0.0238 | 0.0    | 0.0238 | 0.0238    | 7.9318  |
| 3.6038        | 1.8370 | 8500  | 2.7153          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 2.9711        | 1.9451 | 9000  | 1.9488          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 2.2376        | 2.0532 | 9500  | 1.1301          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 1.4721        | 2.1612 | 10000 | 0.5812          | 0.0    | 0.0    | 0.0    | 0.0       | 0.0     |
| 1.0658        | 2.2693 | 10500 | 0.3416          | 0.0746 | 0.0002 | 0.0743 | 0.0741    | 18.8022 |
| 0.6153        | 2.3774 | 11000 | 0.2139          | 0.0442 | 0.0    | 0.0441 | 0.0441    | 2.7739  |
| 0.4134        | 2.4854 | 11500 | 0.1454          | 0.0    | 0.0    | 0.0    | 0.0       | 0.01    |
| 0.31          | 2.5935 | 12000 | 0.1086          | 0.0831 | 0.002  | 0.0824 | 0.0822    | 18.6766 |
| 0.2423        | 2.7015 | 12500 | 0.0821          | 0.0852 | 0.0038 | 0.0848 | 0.0847    | 18.7947 |
| 0.1862        | 2.8096 | 13000 | 0.0670          | 0.078  | 0.001  | 0.0777 | 0.0778    | 18.8196 |
| 0.1596        | 2.9177 | 13500 | 0.0546          | 0.0875 | 0.0042 | 0.0872 | 0.0871    | 18.8279 |
| 0.13          | 3.0257 | 14000 | 0.0586          | 0.0861 | 0.0047 | 0.0858 | 0.0859    | 18.857  |
| 0.1055        | 3.1338 | 14500 | 0.0393          | 0.081  | 0.003  | 0.0808 | 0.0808    | 18.655  |
| 0.0896        | 3.2418 | 15000 | 0.0348          | 0.0832 | 0.0049 | 0.0828 | 0.0827    | 18.7091 |
| 0.0854        | 3.3499 | 15500 | 0.0310          | 0.0858 | 0.0062 | 0.0854 | 0.0853    | 18.6268 |
| 0.0717        | 3.4580 | 16000 | 0.0284          | 0.091  | 0.0084 | 0.0907 | 0.0908    | 18.803  |
| 0.065         | 3.5660 | 16500 | 0.0250          | 0.0887 | 0.0093 | 0.0885 | 0.0885    | 18.7805 |
| 0.0584        | 3.6741 | 17000 | 0.0229          | 0.089  | 0.0109 | 0.0888 | 0.089     | 18.5179 |
| 0.0511        | 3.7821 | 17500 | 0.0209          | 0.0874 | 0.0093 | 0.0872 | 0.0874    | 18.5154 |
| 0.0502        | 3.8902 | 18000 | 0.0189          | 0.091  | 0.0077 | 0.0909 | 0.0906    | 18.4372 |
| 0.0429        | 3.9983 | 18500 | 0.0172          | 0.0865 | 0.0075 | 0.0863 | 0.0862    | 18.8645 |
| 0.0412        | 4.1063 | 19000 | 0.0160          | 0.0911 | 0.008  | 0.0909 | 0.0907    | 18.5395 |
| 0.0419        | 4.2144 | 19500 | 0.0148          | 0.0913 | 0.0118 | 0.091  | 0.0913    | 18.8736 |
| 0.0353        | 4.3225 | 20000 | 0.0137          | 0.0974 | 0.0103 | 0.097  | 0.097     | 18.6874 |
| 0.0321        | 4.4305 | 20500 | 0.0128          | 0.0936 | 0.0128 | 0.0936 | 0.0934    | 18.5578 |
| 0.029         | 4.5386 | 21000 | 0.0120          | 0.0944 | 0.0128 | 0.094  | 0.0939    | 18.7415 |
| 0.0275        | 4.6466 | 21500 | 0.0117          | 0.0907 | 0.0134 | 0.0905 | 0.0907    | 18.7889 |
| 0.0265        | 4.7547 | 22000 | 0.0108          | 0.0902 | 0.008  | 0.0902 | 0.0899    | 18.5669 |
| 0.2825        | 4.8628 | 22500 | 1.2607          | 0.0958 | 0.0112 | 0.0957 | 0.0957    | 18.749  |
| 0.5612        | 4.9708 | 23000 | 0.1068          | 0.0956 | 0.0108 | 0.0955 | 0.0952    | 18.3699 |
| 0.029         | 5.0789 | 23500 | 0.0090          | 0.0941 | 0.0098 | 0.094  | 0.0939    | 18.3973 |
| 0.023         | 5.1869 | 24000 | 0.0085          | 0.0947 | 0.0099 | 0.0945 | 0.0942    | 18.414  |
| 0.0205        | 5.2950 | 24500 | 0.0085          | 0.1042 | 0.0105 | 0.1038 | 0.1039    | 18.4996 |
| 0.0222        | 5.4031 | 25000 | 0.0081          | 0.0916 | 0.0093 | 0.0916 | 0.0914    | 18.6517 |
| 0.0188        | 5.5111 | 25500 | 0.0078          | 0.0964 | 0.0114 | 0.0961 | 0.0961    | 18.2236 |
| 0.0205        | 5.6192 | 26000 | 0.0074          | 0.1077 | 0.0137 | 0.1077 | 0.1076    | 18.325  |
| 0.018         | 5.7273 | 26500 | 0.0071          | 0.1001 | 0.0112 | 0.1    | 0.0995    | 18.6575 |
| 0.0173        | 5.8353 | 27000 | 0.0068          | 0.095  | 0.0096 | 0.0949 | 0.0947    | 18.5669 |
| 0.0162        | 5.9434 | 27500 | 0.0066          | 0.0946 | 0.0091 | 0.0948 | 0.0944    | 18.4871 |
| 0.0145        | 6.0514 | 28000 | 0.0064          | 0.098  | 0.0112 | 0.0979 | 0.0979    | 18.6301 |
| 0.0154        | 6.1595 | 28500 | 0.0064          | 0.0953 | 0.0101 | 0.095  | 0.0952    | 18.4838 |
| 0.0149        | 6.2676 | 29000 | 0.0062          | 0.1013 | 0.0137 | 0.1011 | 0.1011    | 18.2577 |
| 0.014         | 6.3756 | 29500 | 0.0062          | 0.0964 | 0.0141 | 0.0961 | 0.0966    | 18.5195 |
| 0.0142        | 6.4837 | 30000 | 0.0060          | 0.1028 | 0.0143 | 0.1022 | 0.1025    | 18.5062 |
| 0.0138        | 6.5917 | 30500 | 0.0060          | 0.0998 | 0.0141 | 0.0993 | 0.0994    | 18.5794 |
| 0.0124        | 6.6998 | 31000 | 0.0059          | 0.0957 | 0.0113 | 0.0955 | 0.0957    | 18.4938 |
| 0.0119        | 6.8079 | 31500 | 0.0058          | 0.0968 | 0.0113 | 0.0963 | 0.0965    | 18.6401 |
| 0.0132        | 6.9159 | 32000 | 0.0057          | 0.0949 | 0.0104 | 0.0946 | 0.0947    | 18.5628 |
| 0.0129        | 7.0240 | 32500 | 0.0056          | 0.0952 | 0.0146 | 0.0947 | 0.0949    | 18.4406 |
| 0.0125        | 7.1321 | 33000 | 0.0055          | 0.0986 | 0.0127 | 0.0983 | 0.0983    | 18.5777 |
| 0.0107        | 7.2401 | 33500 | 0.0054          | 0.0985 | 0.0137 | 0.0979 | 0.0982    | 18.4264 |
| 0.0228        | 7.3482 | 34000 | 0.0054          | 0.0971 | 0.0113 | 0.0968 | 0.0969    | 18.744  |
| 0.011         | 7.4562 | 34500 | 0.0054          | 0.1089 | 0.0136 | 0.1088 | 0.1086    | 18.9069 |
| 0.0106        | 7.5643 | 35000 | 0.0054          | 0.1058 | 0.0133 | 0.1057 | 0.1055    | 18.7149 |
| 0.0102        | 7.6724 | 35500 | 0.0053          | 0.0957 | 0.0105 | 0.0954 | 0.0953    | 18.6342 |
| 0.0108        | 7.7804 | 36000 | 0.0052          | 0.1028 | 0.0131 | 0.1027 | 0.1024    | 18.9069 |
| 0.0106        | 7.8885 | 36500 | 0.0052          | 0.1075 | 0.0153 | 0.1074 | 0.1073    | 18.6841 |
| 0.0122        | 7.9965 | 37000 | 0.0051          | 0.0995 | 0.0106 | 0.0995 | 0.0993    | 18.7606 |
| 0.0097        | 8.1046 | 37500 | 0.0051          | 0.1128 | 0.0175 | 0.1125 | 0.1125    | 18.985  |
| 0.0098        | 8.2127 | 38000 | 0.0051          | 0.1006 | 0.0102 | 0.1003 | 0.1003    | 18.9701 |
| 0.0095        | 8.3207 | 38500 | 0.0050          | 0.1025 | 0.0105 | 0.1023 | 0.1021    | 18.7897 |
| 0.009         | 8.4288 | 39000 | 0.0050          | 0.1004 | 0.0088 | 0.1003 | 0.1002    | 18.7697 |
| 0.0095        | 8.5368 | 39500 | 0.0050          | 0.1023 | 0.0097 | 0.1023 | 0.1023    | 18.8238 |
| 0.0095        | 8.6449 | 40000 | 0.0050          | 0.0979 | 0.0091 | 0.0979 | 0.0977    | 18.8196 |
| 0.0092        | 8.7530 | 40500 | 0.0049          | 0.1011 | 0.01   | 0.1011 | 0.1009    | 18.926  |
| 0.0091        | 8.8610 | 41000 | 0.0049          | 0.1016 | 0.0103 | 0.1017 | 0.1015    | 18.9302 |
| 0.0091        | 8.9691 | 41500 | 0.0049          | 0.1016 | 0.0111 | 0.1013 | 0.1012    | 18.9302 |
| 0.0089        | 9.0772 | 42000 | 0.0049          | 0.1044 | 0.0113 | 0.1041 | 0.104     | 18.9302 |
| 0.0089        | 9.1852 | 42500 | 0.0049          | 0.1016 | 0.0111 | 0.1013 | 0.1012    | 18.9302 |
| 0.0089        | 9.2933 | 43000 | 0.0049          | 0.1031 | 0.0125 | 0.103  | 0.1027    | 18.9135 |
| 0.0088        | 9.4013 | 43500 | 0.0049          | 0.1009 | 0.0111 | 0.1007 | 0.1004    | 18.9302 |
| 0.0084        | 9.5094 | 44000 | 0.0049          | 0.1022 | 0.0114 | 0.1022 | 0.1019    | 18.9302 |
| 0.0087        | 9.6175 | 44500 | 0.0048          | 0.1031 | 0.0125 | 0.103  | 0.1027    | 18.9302 |
| 0.0082        | 9.7255 | 45000 | 0.0049          | 0.1015 | 0.0114 | 0.1014 | 0.1011    | 18.9302 |
| 0.0084        | 9.8336 | 45500 | 0.0048          | 0.1023 | 0.0125 | 0.1022 | 0.1019    | 18.9302 |
| 0.0081        | 9.9416 | 46000 | 0.0048          | 0.1023 | 0.0125 | 0.1022 | 0.1019    | 18.9302 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1