hiiamsid commited on
Commit
b35c3f8
·
verified ·
1 Parent(s): e5a8aca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -160
README.md CHANGED
@@ -1,11 +1,15 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
 
 
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -15,185 +19,106 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
  [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - RekaAI/VibeEval
6
+ base_model:
7
+ - meta-llama/Llama-3.2-11B-Vision-Instruct
8
+ ---
9
 
10
+ # Model Card for hiiamsid/llama-3.2-vision-11B-VibeEval
11
 
12
+ This is the finetuned version of meta-llama/Llama-3.2-11B-Vision-Instruct trained on RekaAI/VibeEval dataset using FSDP on 2 A100s.
13
 
14
 
15
 
 
19
 
20
  <!-- Provide a longer summary of what this model is. -->
21
 
 
22
 
23
+ - **Developed by:** hiiamsid
24
+ - **Model type:** multimodal (Image/Text to Text)
25
+ - **Language(s) (NLP):** multilingual
26
+ - **License:** Apache License 2.0
27
+ - **Finetuned from model [optional]:** meta-llama/Llama-3.2-11B-Vision-Instruct
 
 
28
 
 
29
 
30
+ ## How to Get Started with the Model
31
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ import requests
34
+ from PIL import Image
35
+ import torch
36
+ from transformers import MllamaForConditionalGeneration, AutoProcessor
37
 
38
+ base_model = "hiiamsid/llama-3.2-vision-11B-VibeEval"
39
 
40
+ processor = AutoProcessor.from_pretrained(base_model)
41
 
42
+ model = MllamaForConditionalGeneration.from_pretrained(
43
+ base_model,
44
+ low_cpu_mem_usage=True,
45
+ torch_dtype=torch.bfloat16,
46
+ device_map="auto",
47
+ )
48
 
49
+ url = "https://lh7-rt.googleusercontent.com/docsz/AD_4nXcz-J3iR2bEGcCSLzay07Rqfj5tTakp2EMTTN0x6nKYGLS5yWl0unoSpj2S0-mrWpDtMqjl1fAgH6pVkKJekQEY_kwzL6QNOdf143Yt66znQ0EpfLvx6CLFOqw41oeOYmhPZ6Qrlb5AjEr4AenIOgBMTWTD?key=vhLUYntaS9QOx531XpJH3g"
50
+ image = Image.open(requests.get(url, stream=True).raw)
51
 
52
+ messages = [
53
+ {"role": "user", "content": [
54
+ {"type": "image"},
55
+ {"type": "text", "text": "Describe the tutorial feature image."}
56
+ ]}
57
+ ]
58
+ input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
59
+ inputs = processor(image, input_text, return_tensors="pt").to(model.device)
60
 
61
+ output = model.generate(**inputs, max_new_tokens=120)
62
+ print(processor.decode(output[0]))
63
+ ```
64
 
65
  ## Training Details
66
 
67
  ### Training Data
68
+ RekaAI/VibeEval: https://huggingface.co/datasets/RekaAI/VibeEval
 
 
 
69
 
70
  ### Training Procedure
71
 
72
+ -Trained using FSDP activating wraping policy, MixedPrecision Policy (on bfloat16), activationcheckpointing etc and saved using Type FULL_STATE_DICT
 
 
 
 
 
73
 
74
  #### Training Hyperparameters
75
 
76
+ ```
77
+ @dataclass
78
+ class train_config:
79
+ model_name: str="meta-llama/Llama-3.2-11B-Vision-Instruct"
80
+ batch_size_training: int=8
81
+ batching_strategy: str="padding" #alternative is packing but vision model doesn't work with packing.
82
+ context_length: int =4096
83
+ gradient_accumulation_steps: int=1
84
+ num_epochs: int=3
85
+ lr: float=1e-5
86
+ weight_decay: float=0.0
87
+ gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch
88
+ seed: int=42
89
+ use_fp16: bool=False
90
+ mixed_precision: bool=True
91
+ val_batch_size:int = 1
92
+ use_peft: bool = False
93
+ output_dir: str = "workspace/models"
94
+ enable_fsdp: bool = True
95
+ dist_checkpoint_root_folder: str="workspace/FSDP/model" # will be used if using FSDP
96
+ dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
97
+ save_optimizer: bool=False # will be used if using FSDP
98
+
99
+ @dataclass
100
+ class fsdp_config:
101
+ mixed_precision: bool = True
102
+ use_fp16: bool=False
103
+ sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD # HYBRID_SHARD "Full Shard within a node DDP cross Nodes", SHARD_GRAD_OP "Shard only Gradients and Optimizer States", NO_SHARD "Similar to DDP".
104
+ hsdp : bool =False # Require HYBRID_SHARD to be set. This flag can extend the HYBRID_SHARD by allowing sharding a model on customized number of GPUs (Sharding_group) and Replicas over Sharding_group.
105
+ sharding_group_size: int=0 # requires hsdp to be set. This specifies the sharding group size, number of GPUs that you model can fit into to form a replica of a model.
106
+ replica_group_size: int=0 #requires hsdp to be set. This specifies the replica group size, which is world_size/sharding_group_size.
107
+ checkpoint_type: StateDictType = StateDictType.FULL_STATE_DICT # alternatively FULL_STATE_DICT can be used. SHARDED_STATE_DICT saves one file with sharded weights per rank while FULL_STATE_DICT will collect all weights on rank 0 and save them in a single file.
108
+ fsdp_activation_checkpointing: bool=True
109
+ fsdp_cpu_offload: bool=False
110
+ pure_bf16: bool = True
111
+ optimizer: str= "AdamW"
112
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
  ### Model Architecture and Objective
115
+ This was just trained to see how much improvement can be seen when finetuned llama 3.2 vision.
 
116
 
117
  ### Compute Infrastructure
118
+ Trained on 2 A100 (80GB) from runpods.
119
 
120
+ ## Citation
 
 
 
 
 
 
 
 
 
 
121
 
122
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
123
+ https://github.com/meta-llama/llama-recipes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
  [More Information Needed]