---
base_model: unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
---
Function calling requires two step inferences, below is the example:
# Step 1:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
model_id = "R1_tool_call_Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tools = [
{
"name": "create_contact",
"description": "Create a new contact",
"parameters": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "The name of the contact"
},
"email": {
"type": "string",
"description": "The email address of the contact"
}
},
"required": ["name", "email"]
}
}
]
messages = [
{ "role": "user", "content": f"""You have access to these tools, use them if necessary: {tools}
I need to create a new contact for my friend John Doe. His email is johndoe@example.com."""
}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# >>
# >> <|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>create_contact
# >> ```json
# >> {"name": "John Doe", "email": "johndoe@example.com"}
# >> ```<|tool▁call▁end|><|tool▁calls▁end|>
# Above is a response from assistant, you need to parse it and execute a tool on your own.
```
# Step 2:
```python
messages = [
{"role": "user", "content": """You have access to these tools, use them if necessary: {tools}\n\nI need to create a new contact for my friend John Doe. His email is johndoe@example.com."""},
{"role": "assistant", "content": None, "tool_calls": [
{
"type": "function",
"function": {
"name": "create_contact",
"arguments": json.dumps({"name": "John Doe", "email": "johndoe@example.com"})
}
},
]},
{"role": "tool", "name": "create_contact", "content": """{"status": "success", "message": "Contact for John Doe with email johndoe@example.com has been created successfully."}"""},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# >>
# >> Based on the user's request, I have created a contact for John Doe with his email address. The tool has successfully created the contact. I will now provide the contact information to the user.
# >> The contact for John Doe has been successfully created with the email address johndoe@example.com. Please feel free to reach out to him if needed.
```
# Limitations:
- The model sometimes refused not to think
# Uploaded model
- **Developed by:** hiieu
- **License:** apache-2.0
- **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Qwen-1.5B-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[](https://github.com/unslothai/unsloth)