hizak commited on
Commit
9b79ecf
·
1 Parent(s): dfb0e8d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 238.35 +/- 20.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6b81e8790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6b81e8820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6b81e88b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6b81e8940>", "_build": "<function ActorCriticPolicy._build at 0x7ff6b81e89d0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff6b81e8a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6b81e8af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff6b81e8b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6b81e8c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6b81e8ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6b81e8d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff6b81e9060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670943862170268707, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABKWb4iLUw+qMvhPFLdGL4LWjW9qGYVPQAAAAAAAAAA80MOPtfOQLv+Tzq7t6MNOctzwbzTXUI6AACAPwAAgD/mJSI9H2W5uW7idrzmwEM1tVYeuz08tbQAAIA/AACAP0AqXL6pNnu8bHoJuQWxFrfRA+Q902rwNwAAgD8AAIA/yiRWvvF3RzzCLnS7BvCIObRo2b1eE5Q6AACAPwAAgD+zc5g9KQQEujJIIzrJRhw12bnkuuXmPbkAAIA/AACAP2bNibzDbWe6zPaSuuO/krZjhDi7d9YDNgAAgD8AAIA/AFKFPXEtN7kgQOy6ooBvtUn2qruwPgs6AACAPwAAgD9mznk77PGPOKZrfTw53R49rq+duhIlcjwAAIA/AACAP1rGjT2szRc/+sXvvee8dr5wMJi7ZR1gPQAAAAAAAAAAABgtvSk0IrpjQY47wkE7N6iS5jp0Gqe6AACAPwAAgD8zJPE9jwZnuigg2TogZYC3oneEusg7AroAAIA/AACAP2bH6r1cp2S6g2Neu7pHAzZ5AYS7/P6POgAAgD8AAIA/AJ9BvY/eNLp+hTw6yXiWtO/lLLqi+1u5AACAPwAAgD8axs69E53EPj7lOz0UyZq+4KXsvNqqMLwAAAAAAAAAAM1yxLxcb0i6X8uRuFlxQbbl2gY7O8OrNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1o7iHHV6X0CUhpRSlIwBbJRN6AOMAXSUR0Cntgr4FiazdX2UKGgGaAloD0MIWrqCbcSvYUCUhpRSlGgVTegDaBZHQKfFfHwPRRd1fZQoaAZoCWgPQwg+yogLQNc4QJSGlFKUaBVL1mgWR0CnxaQWepXIdX2UKGgGaAloD0MIW3nJ/+TjQsCUhpRSlGgVS+loFkdAp8W+7jDKo3V9lChoBmgJaA9DCG6mQjwSTwrAlIaUUpRoFUvyaBZHQKfGSQhfShJ1fZQoaAZoCWgPQwiiKTv9oAVlQJSGlFKUaBVN6ANoFkdAp8hJjFyaNXV9lChoBmgJaA9DCBhA+FAio2NAlIaUUpRoFU3oA2gWR0CnyK3A2ycDdX2UKGgGaAloD0MIXYqryr5QX0CUhpRSlGgVTegDaBZHQKfKtHAAQxx1fZQoaAZoCWgPQwhZ3H9kuq9lQJSGlFKUaBVN6ANoFkdAp8xrH4oJA3V9lChoBmgJaA9DCL+7lSU6OyHAlIaUUpRoFUvmaBZHQKfNHXSSeRR1fZQoaAZoCWgPQwj9EBssnCT+v5SGlFKUaBVL2mgWR0Cnz23+dbxFdX2UKGgGaAloD0MIehwG81doDUCUhpRSlGgVS+NoFkdAp9AfWrfce3V9lChoBmgJaA9DCJaYZyWtJl9AlIaUUpRoFU3oA2gWR0Cn04nmJWNndX2UKGgGaAloD0MI1PGYgUolZkCUhpRSlGgVTegDaBZHQKfaLsa86FN1fZQoaAZoCWgPQwgJceXsnURhQJSGlFKUaBVN6ANoFkdAp9tLEgntwHV9lChoBmgJaA9DCLfSa7OxYhpAlIaUUpRoFUviaBZHQKfboYpDu0F1fZQoaAZoCWgPQwi8Bn3p7dJdQJSGlFKUaBVN6ANoFkdAp9v9stTUAnV9lChoBmgJaA9DCMK+nUSE32VAlIaUUpRoFU3oA2gWR0Cn3B6bvw3HdX2UKGgGaAloD0MIzvxqDhAGXUCUhpRSlGgVTegDaBZHQKfgYttALRd1fZQoaAZoCWgPQwiqfM9IBH9iQJSGlFKUaBVN6ANoFkdAp+CzmbLEDXV9lChoBmgJaA9DCMGRQINNiWNAlIaUUpRoFU3oA2gWR0Cn4VSidrftdX2UKGgGaAloD0MIsW68OzIiMkCUhpRSlGgVS9loFkdAp+H4m9g4O3V9lChoBmgJaA9DCEkPQ6uTYzdAlIaUUpRoFU0DAWgWR0Cn4lASFoL5dX2UKGgGaAloD0MIJ2vUQzQGXkCUhpRSlGgVTegDaBZHQKfwl+/gzgx1fZQoaAZoCWgPQwimgR/VsPpdQJSGlFKUaBVN6ANoFkdAp/DBlcyFf3V9lChoBmgJaA9DCI47pYP1//+/lIaUUpRoFUvcaBZHQKfxUOYplSV1fZQoaAZoCWgPQwi54Az+/kZkQJSGlFKUaBVN6ANoFkdAp/FQ0Q9RrXV9lChoBmgJaA9DCPopjgMvDmdAlIaUUpRoFU3oA2gWR0Cn9W8O9WZJdX2UKGgGaAloD0MIsyYW+IqVYUCUhpRSlGgVTegDaBZHQKf3NhrFfiR1fZQoaAZoCWgPQwimCkYldVpdQJSGlFKUaBVN6ANoFkdAp/fwNmUW23V9lChoBmgJaA9DCFoNiXus/GFAlIaUUpRoFU3oA2gWR0Cn+hU8NhE0dX2UKGgGaAloD0MIlIeFWtMMYUCUhpRSlGgVTegDaBZHQKf6vSZSeiB1fZQoaAZoCWgPQwh2jZYDPZhFQJSGlFKUaBVLy2gWR0CoAZymhufmdX2UKGgGaAloD0MILXjRVxC8ZECUhpRSlGgVTegDaBZHQKgGLWe6I311fZQoaAZoCWgPQwgVU+knHCBiQJSGlFKUaBVN6ANoFkdAqAaL0L+glHV9lChoBmgJaA9DCDUk7rH0n11AlIaUUpRoFU3oA2gWR0CoBrCSJTESdX2UKGgGaAloD0MIhNkEGBZ9ZECUhpRSlGgVTegDaBZHQKgMI63AmAt1fZQoaAZoCWgPQwgPQ6uTswRhQJSGlFKUaBVN6ANoFkdAqAzg+r2g4HV9lChoBmgJaA9DCAGiYMYUJFpAlIaUUpRoFU3oA2gWR0CoDa/igkC4dX2UKGgGaAloD0MIOdOE7SciX0CUhpRSlGgVTegDaBZHQKgOCzabnYB1fZQoaAZoCWgPQwjh7xezJbM3QJSGlFKUaBVL4GgWR0CoDpf4IrvtdX2UKGgGaAloD0MIOBCSBcziZkCUhpRSlGgVTegDaBZHQKgcuANoak11fZQoaAZoCWgPQwip9ul4zGhkQJSGlFKUaBVN6ANoFkdAqBzkgU1yenV9lChoBmgJaA9DCJLmj2ltNlhAlIaUUpRoFU3oA2gWR0CoHXf+bVjJdX2UKGgGaAloD0MItFpgj4l4ZECUhpRSlGgVTegDaBZHQKgdeIldC3R1fZQoaAZoCWgPQwhjmX6JeC1IQJSGlFKUaBVNDQFoFkdAqB7rlmvnsHV9lChoBmgJaA9DCMAlAP+UY2NAlIaUUpRoFU3oA2gWR0CoIRtHYpUhdX2UKGgGaAloD0MIe4hGd5CDZUCUhpRSlGgVTegDaBZHQKgip7Lt/nZ1fZQoaAZoCWgPQwjYutQI/ZBgQJSGlFKUaBVN6ANoFkdAqCNHJPqLTHV9lChoBmgJaA9DCNpxw++mvz9AlIaUUpRoFUvXaBZHQKgjVdBSk0t1fZQoaAZoCWgPQwgaiGUzh+phQJSGlFKUaBVN6ANoFkdAqCU9bFCLM3V9lChoBmgJaA9DCKoqNBDL5uG/lIaUUpRoFUvZaBZHQKgnbMoMKCx1fZQoaAZoCWgPQwhuE+6Vees1QJSGlFKUaBVL8WgWR0CoKger+5vtdX2UKGgGaAloD0MIq8/VVmwEYkCUhpRSlGgVTegDaBZHQKgsZ6MR6GB1fZQoaAZoCWgPQwjJrrSM1CBjQJSGlFKUaBVN6ANoFkdAqDB5M10knnV9lChoBmgJaA9DCO87hsd+J2JAlIaUUpRoFU3oA2gWR0CoMNKyOaOQdX2UKGgGaAloD0MIN4sXC8N3bUCUhpRSlGgVTWsBaBZHQKg2ETEBKcx1fZQoaAZoCWgPQwjOOXgmNKBkQJSGlFKUaBVN6ANoFkdAqDaRfx+a0HV9lChoBmgJaA9DCLA5B8+ELGBAlIaUUpRoFU3oA2gWR0CoN07yYoiLdX2UKGgGaAloD0MIyeTUzjCEXkCUhpRSlGgVTegDaBZHQKg3r2dupCN1fZQoaAZoCWgPQwiDonkAi1RkQJSGlFKUaBVN6ANoFkdAqDgxJEpiJHV9lChoBmgJaA9DCN5VD5gHm2BAlIaUUpRoFU3oA2gWR0CoRgPcBU70dX2UKGgGaAloD0MIIo51cRvfY0CUhpRSlGgVTegDaBZHQKhGLm7J4jd1fZQoaAZoCWgPQwjQQgJGl7ZaQJSGlFKUaBVN6ANoFkdAqEbLJMg2ZXV9lChoBmgJaA9DCGhbzTpjZGNAlIaUUpRoFU3oA2gWR0CoSJQI2OyWdX2UKGgGaAloD0MICaaaWUvqbkCUhpRSlGgVTVMBaBZHQKhK04WDYiB1fZQoaAZoCWgPQwjni70XXyw9wJSGlFKUaBVLu2gWR0CoS88NH6MzdX2UKGgGaAloD0MI4QhSKXaAZUCUhpRSlGgVTegDaBZHQKhNSzsQd0d1fZQoaAZoCWgPQwgQH9jx35xhQJSGlFKUaBVN6ANoFkdAqE1bUZvUBnV9lChoBmgJaA9DCH9skh/xhzxAlIaUUpRoFUv3aBZHQKhNjsk6cRV1fZQoaAZoCWgPQwgCDqFKTahiQJSGlFKUaBVN6ANoFkdAqE9P9Hc1wnV9lChoBmgJaA9DCKbuyi6Y3WFAlIaUUpRoFU3oA2gWR0CoUZiFK02MdX2UKGgGaAloD0MIxAlMpzUGcECUhpRSlGgVTS8BaBZHQKhUNm/336B1fZQoaAZoCWgPQwhbfAqAcTRmQJSGlFKUaBVN6ANoFkdAqFaFTBInSnV9lChoBmgJaA9DCD/HR4szDWRAlIaUUpRoFU3oA2gWR0CoWuHw5NoKdX2UKGgGaAloD0MIZM+ey9QrX0CUhpRSlGgVTegDaBZHQKhbRwgkkbB1fZQoaAZoCWgPQwhvRs1XyUFjQJSGlFKUaBVN6ANoFkdAqGFYMF2V3XV9lChoBmgJaA9DCC6thsS9h2RAlIaUUpRoFU3oA2gWR0CoYhiLEUCadX2UKGgGaAloD0MIOdIZGPmlY0CUhpRSlGgVTegDaBZHQKhiehysCDF1fZQoaAZoCWgPQwhklGdejlhlQJSGlFKUaBVN6ANoFkdAqGMJu0kWynV9lChoBmgJaA9DCBP0F3rErDRAlIaUUpRoFUvtaBZHQKhjR+vyLAJ1fZQoaAZoCWgPQwjOiNLe4JpjQJSGlFKUaBVN6ANoFkdAqHFSLIgeR3V9lChoBmgJaA9DCBxDAHDsaS5AlIaUUpRoFUupaBZHQKhyMQ5FPSF1fZQoaAZoCWgPQwiS7BFqBitmQJSGlFKUaBVN6ANoFkdAqHLopvxYrHV9lChoBmgJaA9DCKMh41EqaTVAlIaUUpRoFUvqaBZHQKh0PnzQNTd1fZQoaAZoCWgPQwiobcMoCBdhQJSGlFKUaBVN6ANoFkdAqHXrsjVx0nV9lChoBmgJaA9DCLOY2Hzc72JAlIaUUpRoFU3oA2gWR0CodziRfWtmdX2UKGgGaAloD0MIup7ouvA5ZECUhpRSlGgVTegDaBZHQKh3RW07bL51fZQoaAZoCWgPQwjulA7W/xJmQJSGlFKUaBVN6ANoFkdAqHdytLcsUnV9lChoBmgJaA9DCKXAApgyXD9AlIaUUpRoFUvuaBZHQKh3zLnLaEl1fZQoaAZoCWgPQwijPPNyWCpoQJSGlFKUaBVN6ANoFkdAqHjMlLOAy3V9lChoBmgJaA9DCEYldQIa4GNAlIaUUpRoFU3oA2gWR0CoeonU+cH4dX2UKGgGaAloD0MIjJ3wEpwCZ0CUhpRSlGgVTegDaBZHQKh8lgk1Muh1fZQoaAZoCWgPQwhuFFlrKBdBQJSGlFKUaBVL42gWR0CofVmrsByTdX2UKGgGaAloD0MIXaeRlspzYUCUhpRSlGgVTegDaBZHQKh+kpF1B+p1fZQoaAZoCWgPQwhW0opvKMJDQJSGlFKUaBVNEgFoFkdAqIAoNVinYXV9lChoBmgJaA9DCICdmzZj+GRAlIaUUpRoFU3oA2gWR0Cognp9JBgNdX2UKGgGaAloD0MI0sJlFTZXZECUhpRSlGgVTegDaBZHQKiJN7RfF751fZQoaAZoCWgPQwhLOsrBbFVjQJSGlFKUaBVN6ANoFkdAqIoYVbiZOXV9lChoBmgJaA9DCMZP4958qmJAlIaUUpRoFU3oA2gWR0Coioie2/i6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_lunar_land_model_1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9bc992743b24d6c989c756e7e4fed3f5a59543157899e32135a03a6e04599d5
3
+ size 147190
ppo_lunar_land_model_1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_lunar_land_model_1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6b81e8790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6b81e8820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6b81e88b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6b81e8940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff6b81e89d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff6b81e8a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6b81e8af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff6b81e8b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6b81e8c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6b81e8ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6b81e8d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff6b81e9060>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670943862170268707,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABKWb4iLUw+qMvhPFLdGL4LWjW9qGYVPQAAAAAAAAAA80MOPtfOQLv+Tzq7t6MNOctzwbzTXUI6AACAPwAAgD/mJSI9H2W5uW7idrzmwEM1tVYeuz08tbQAAIA/AACAP0AqXL6pNnu8bHoJuQWxFrfRA+Q902rwNwAAgD8AAIA/yiRWvvF3RzzCLnS7BvCIObRo2b1eE5Q6AACAPwAAgD+zc5g9KQQEujJIIzrJRhw12bnkuuXmPbkAAIA/AACAP2bNibzDbWe6zPaSuuO/krZjhDi7d9YDNgAAgD8AAIA/AFKFPXEtN7kgQOy6ooBvtUn2qruwPgs6AACAPwAAgD9mznk77PGPOKZrfTw53R49rq+duhIlcjwAAIA/AACAP1rGjT2szRc/+sXvvee8dr5wMJi7ZR1gPQAAAAAAAAAAABgtvSk0IrpjQY47wkE7N6iS5jp0Gqe6AACAPwAAgD8zJPE9jwZnuigg2TogZYC3oneEusg7AroAAIA/AACAP2bH6r1cp2S6g2Neu7pHAzZ5AYS7/P6POgAAgD8AAIA/AJ9BvY/eNLp+hTw6yXiWtO/lLLqi+1u5AACAPwAAgD8axs69E53EPj7lOz0UyZq+4KXsvNqqMLwAAAAAAAAAAM1yxLxcb0i6X8uRuFlxQbbl2gY7O8OrNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1o7iHHV6X0CUhpRSlIwBbJRN6AOMAXSUR0Cntgr4FiazdX2UKGgGaAloD0MIWrqCbcSvYUCUhpRSlGgVTegDaBZHQKfFfHwPRRd1fZQoaAZoCWgPQwg+yogLQNc4QJSGlFKUaBVL1mgWR0CnxaQWepXIdX2UKGgGaAloD0MIW3nJ/+TjQsCUhpRSlGgVS+loFkdAp8W+7jDKo3V9lChoBmgJaA9DCG6mQjwSTwrAlIaUUpRoFUvyaBZHQKfGSQhfShJ1fZQoaAZoCWgPQwiiKTv9oAVlQJSGlFKUaBVN6ANoFkdAp8hJjFyaNXV9lChoBmgJaA9DCBhA+FAio2NAlIaUUpRoFU3oA2gWR0CnyK3A2ycDdX2UKGgGaAloD0MIXYqryr5QX0CUhpRSlGgVTegDaBZHQKfKtHAAQxx1fZQoaAZoCWgPQwhZ3H9kuq9lQJSGlFKUaBVN6ANoFkdAp8xrH4oJA3V9lChoBmgJaA9DCL+7lSU6OyHAlIaUUpRoFUvmaBZHQKfNHXSSeRR1fZQoaAZoCWgPQwj9EBssnCT+v5SGlFKUaBVL2mgWR0Cnz23+dbxFdX2UKGgGaAloD0MIehwG81doDUCUhpRSlGgVS+NoFkdAp9AfWrfce3V9lChoBmgJaA9DCJaYZyWtJl9AlIaUUpRoFU3oA2gWR0Cn04nmJWNndX2UKGgGaAloD0MI1PGYgUolZkCUhpRSlGgVTegDaBZHQKfaLsa86FN1fZQoaAZoCWgPQwgJceXsnURhQJSGlFKUaBVN6ANoFkdAp9tLEgntwHV9lChoBmgJaA9DCLfSa7OxYhpAlIaUUpRoFUviaBZHQKfboYpDu0F1fZQoaAZoCWgPQwi8Bn3p7dJdQJSGlFKUaBVN6ANoFkdAp9v9stTUAnV9lChoBmgJaA9DCMK+nUSE32VAlIaUUpRoFU3oA2gWR0Cn3B6bvw3HdX2UKGgGaAloD0MIzvxqDhAGXUCUhpRSlGgVTegDaBZHQKfgYttALRd1fZQoaAZoCWgPQwiqfM9IBH9iQJSGlFKUaBVN6ANoFkdAp+CzmbLEDXV9lChoBmgJaA9DCMGRQINNiWNAlIaUUpRoFU3oA2gWR0Cn4VSidrftdX2UKGgGaAloD0MIsW68OzIiMkCUhpRSlGgVS9loFkdAp+H4m9g4O3V9lChoBmgJaA9DCEkPQ6uTYzdAlIaUUpRoFU0DAWgWR0Cn4lASFoL5dX2UKGgGaAloD0MIJ2vUQzQGXkCUhpRSlGgVTegDaBZHQKfwl+/gzgx1fZQoaAZoCWgPQwimgR/VsPpdQJSGlFKUaBVN6ANoFkdAp/DBlcyFf3V9lChoBmgJaA9DCI47pYP1//+/lIaUUpRoFUvcaBZHQKfxUOYplSV1fZQoaAZoCWgPQwi54Az+/kZkQJSGlFKUaBVN6ANoFkdAp/FQ0Q9RrXV9lChoBmgJaA9DCPopjgMvDmdAlIaUUpRoFU3oA2gWR0Cn9W8O9WZJdX2UKGgGaAloD0MIsyYW+IqVYUCUhpRSlGgVTegDaBZHQKf3NhrFfiR1fZQoaAZoCWgPQwimCkYldVpdQJSGlFKUaBVN6ANoFkdAp/fwNmUW23V9lChoBmgJaA9DCFoNiXus/GFAlIaUUpRoFU3oA2gWR0Cn+hU8NhE0dX2UKGgGaAloD0MIlIeFWtMMYUCUhpRSlGgVTegDaBZHQKf6vSZSeiB1fZQoaAZoCWgPQwh2jZYDPZhFQJSGlFKUaBVLy2gWR0CoAZymhufmdX2UKGgGaAloD0MILXjRVxC8ZECUhpRSlGgVTegDaBZHQKgGLWe6I311fZQoaAZoCWgPQwgVU+knHCBiQJSGlFKUaBVN6ANoFkdAqAaL0L+glHV9lChoBmgJaA9DCDUk7rH0n11AlIaUUpRoFU3oA2gWR0CoBrCSJTESdX2UKGgGaAloD0MIhNkEGBZ9ZECUhpRSlGgVTegDaBZHQKgMI63AmAt1fZQoaAZoCWgPQwgPQ6uTswRhQJSGlFKUaBVN6ANoFkdAqAzg+r2g4HV9lChoBmgJaA9DCAGiYMYUJFpAlIaUUpRoFU3oA2gWR0CoDa/igkC4dX2UKGgGaAloD0MIOdOE7SciX0CUhpRSlGgVTegDaBZHQKgOCzabnYB1fZQoaAZoCWgPQwjh7xezJbM3QJSGlFKUaBVL4GgWR0CoDpf4IrvtdX2UKGgGaAloD0MIOBCSBcziZkCUhpRSlGgVTegDaBZHQKgcuANoak11fZQoaAZoCWgPQwip9ul4zGhkQJSGlFKUaBVN6ANoFkdAqBzkgU1yenV9lChoBmgJaA9DCJLmj2ltNlhAlIaUUpRoFU3oA2gWR0CoHXf+bVjJdX2UKGgGaAloD0MItFpgj4l4ZECUhpRSlGgVTegDaBZHQKgdeIldC3R1fZQoaAZoCWgPQwhjmX6JeC1IQJSGlFKUaBVNDQFoFkdAqB7rlmvnsHV9lChoBmgJaA9DCMAlAP+UY2NAlIaUUpRoFU3oA2gWR0CoIRtHYpUhdX2UKGgGaAloD0MIe4hGd5CDZUCUhpRSlGgVTegDaBZHQKgip7Lt/nZ1fZQoaAZoCWgPQwjYutQI/ZBgQJSGlFKUaBVN6ANoFkdAqCNHJPqLTHV9lChoBmgJaA9DCNpxw++mvz9AlIaUUpRoFUvXaBZHQKgjVdBSk0t1fZQoaAZoCWgPQwgaiGUzh+phQJSGlFKUaBVN6ANoFkdAqCU9bFCLM3V9lChoBmgJaA9DCKoqNBDL5uG/lIaUUpRoFUvZaBZHQKgnbMoMKCx1fZQoaAZoCWgPQwhuE+6Vees1QJSGlFKUaBVL8WgWR0CoKger+5vtdX2UKGgGaAloD0MIq8/VVmwEYkCUhpRSlGgVTegDaBZHQKgsZ6MR6GB1fZQoaAZoCWgPQwjJrrSM1CBjQJSGlFKUaBVN6ANoFkdAqDB5M10knnV9lChoBmgJaA9DCO87hsd+J2JAlIaUUpRoFU3oA2gWR0CoMNKyOaOQdX2UKGgGaAloD0MIN4sXC8N3bUCUhpRSlGgVTWsBaBZHQKg2ETEBKcx1fZQoaAZoCWgPQwjOOXgmNKBkQJSGlFKUaBVN6ANoFkdAqDaRfx+a0HV9lChoBmgJaA9DCLA5B8+ELGBAlIaUUpRoFU3oA2gWR0CoN07yYoiLdX2UKGgGaAloD0MIyeTUzjCEXkCUhpRSlGgVTegDaBZHQKg3r2dupCN1fZQoaAZoCWgPQwiDonkAi1RkQJSGlFKUaBVN6ANoFkdAqDgxJEpiJHV9lChoBmgJaA9DCN5VD5gHm2BAlIaUUpRoFU3oA2gWR0CoRgPcBU70dX2UKGgGaAloD0MIIo51cRvfY0CUhpRSlGgVTegDaBZHQKhGLm7J4jd1fZQoaAZoCWgPQwjQQgJGl7ZaQJSGlFKUaBVN6ANoFkdAqEbLJMg2ZXV9lChoBmgJaA9DCGhbzTpjZGNAlIaUUpRoFU3oA2gWR0CoSJQI2OyWdX2UKGgGaAloD0MICaaaWUvqbkCUhpRSlGgVTVMBaBZHQKhK04WDYiB1fZQoaAZoCWgPQwjni70XXyw9wJSGlFKUaBVLu2gWR0CoS88NH6MzdX2UKGgGaAloD0MI4QhSKXaAZUCUhpRSlGgVTegDaBZHQKhNSzsQd0d1fZQoaAZoCWgPQwgQH9jx35xhQJSGlFKUaBVN6ANoFkdAqE1bUZvUBnV9lChoBmgJaA9DCH9skh/xhzxAlIaUUpRoFUv3aBZHQKhNjsk6cRV1fZQoaAZoCWgPQwgCDqFKTahiQJSGlFKUaBVN6ANoFkdAqE9P9Hc1wnV9lChoBmgJaA9DCKbuyi6Y3WFAlIaUUpRoFU3oA2gWR0CoUZiFK02MdX2UKGgGaAloD0MIxAlMpzUGcECUhpRSlGgVTS8BaBZHQKhUNm/336B1fZQoaAZoCWgPQwhbfAqAcTRmQJSGlFKUaBVN6ANoFkdAqFaFTBInSnV9lChoBmgJaA9DCD/HR4szDWRAlIaUUpRoFU3oA2gWR0CoWuHw5NoKdX2UKGgGaAloD0MIZM+ey9QrX0CUhpRSlGgVTegDaBZHQKhbRwgkkbB1fZQoaAZoCWgPQwhvRs1XyUFjQJSGlFKUaBVN6ANoFkdAqGFYMF2V3XV9lChoBmgJaA9DCC6thsS9h2RAlIaUUpRoFU3oA2gWR0CoYhiLEUCadX2UKGgGaAloD0MIOdIZGPmlY0CUhpRSlGgVTegDaBZHQKhiehysCDF1fZQoaAZoCWgPQwhklGdejlhlQJSGlFKUaBVN6ANoFkdAqGMJu0kWynV9lChoBmgJaA9DCBP0F3rErDRAlIaUUpRoFUvtaBZHQKhjR+vyLAJ1fZQoaAZoCWgPQwjOiNLe4JpjQJSGlFKUaBVN6ANoFkdAqHFSLIgeR3V9lChoBmgJaA9DCBxDAHDsaS5AlIaUUpRoFUupaBZHQKhyMQ5FPSF1fZQoaAZoCWgPQwiS7BFqBitmQJSGlFKUaBVN6ANoFkdAqHLopvxYrHV9lChoBmgJaA9DCKMh41EqaTVAlIaUUpRoFUvqaBZHQKh0PnzQNTd1fZQoaAZoCWgPQwiobcMoCBdhQJSGlFKUaBVN6ANoFkdAqHXrsjVx0nV9lChoBmgJaA9DCLOY2Hzc72JAlIaUUpRoFU3oA2gWR0CodziRfWtmdX2UKGgGaAloD0MIup7ouvA5ZECUhpRSlGgVTegDaBZHQKh3RW07bL51fZQoaAZoCWgPQwjulA7W/xJmQJSGlFKUaBVN6ANoFkdAqHdytLcsUnV9lChoBmgJaA9DCKXAApgyXD9AlIaUUpRoFUvuaBZHQKh3zLnLaEl1fZQoaAZoCWgPQwijPPNyWCpoQJSGlFKUaBVN6ANoFkdAqHjMlLOAy3V9lChoBmgJaA9DCEYldQIa4GNAlIaUUpRoFU3oA2gWR0CoeonU+cH4dX2UKGgGaAloD0MIjJ3wEpwCZ0CUhpRSlGgVTegDaBZHQKh8lgk1Muh1fZQoaAZoCWgPQwhuFFlrKBdBQJSGlFKUaBVL42gWR0CofVmrsByTdX2UKGgGaAloD0MIXaeRlspzYUCUhpRSlGgVTegDaBZHQKh+kpF1B+p1fZQoaAZoCWgPQwhW0opvKMJDQJSGlFKUaBVNEgFoFkdAqIAoNVinYXV9lChoBmgJaA9DCICdmzZj+GRAlIaUUpRoFU3oA2gWR0Cognp9JBgNdX2UKGgGaAloD0MI0sJlFTZXZECUhpRSlGgVTegDaBZHQKiJN7RfF751fZQoaAZoCWgPQwhLOsrBbFVjQJSGlFKUaBVN6ANoFkdAqIoYVbiZOXV9lChoBmgJaA9DCMZP4958qmJAlIaUUpRoFU3oA2gWR0Coioie2/i6dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_lunar_land_model_1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07f7611767568a253d7c06b2c0298c75d0004317022aff074c5a4ee79d7ebd74
3
+ size 87929
ppo_lunar_land_model_1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f4a3c110c71b6793881bc1c2a8f8bdeb75b8686a139bee8771d5153dc7cb2ab
3
+ size 43201
ppo_lunar_land_model_1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunar_land_model_1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (244 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 238.35011019705865, "std_reward": 20.915457599323744, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T15:33:01.879657"}