--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_lr001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7619047619047619 --- # hushem_1x_deit_tiny_adamax_lr001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7197 - Accuracy: 0.7619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.67 | 1 | 4.5038 | 0.2619 | | No log | 2.0 | 3 | 1.5021 | 0.2381 | | No log | 2.67 | 4 | 1.6655 | 0.2619 | | No log | 4.0 | 6 | 1.3927 | 0.2381 | | No log | 4.67 | 7 | 1.4664 | 0.2381 | | No log | 6.0 | 9 | 1.4341 | 0.2381 | | 1.9815 | 6.67 | 10 | 1.3866 | 0.5238 | | 1.9815 | 8.0 | 12 | 1.4168 | 0.2381 | | 1.9815 | 8.67 | 13 | 1.3770 | 0.2381 | | 1.9815 | 10.0 | 15 | 1.3099 | 0.2619 | | 1.9815 | 10.67 | 16 | 1.3229 | 0.2381 | | 1.9815 | 12.0 | 18 | 1.2134 | 0.5 | | 1.9815 | 12.67 | 19 | 1.1451 | 0.5238 | | 1.3526 | 14.0 | 21 | 1.1341 | 0.6429 | | 1.3526 | 14.67 | 22 | 0.9936 | 0.5952 | | 1.3526 | 16.0 | 24 | 0.8768 | 0.6905 | | 1.3526 | 16.67 | 25 | 0.9003 | 0.7143 | | 1.3526 | 18.0 | 27 | 0.7438 | 0.7857 | | 1.3526 | 18.67 | 28 | 0.6744 | 0.7143 | | 1.0291 | 20.0 | 30 | 0.6946 | 0.7381 | | 1.0291 | 20.67 | 31 | 0.6723 | 0.7381 | | 1.0291 | 22.0 | 33 | 0.7030 | 0.7619 | | 1.0291 | 22.67 | 34 | 0.6565 | 0.7857 | | 1.0291 | 24.0 | 36 | 0.6394 | 0.7619 | | 1.0291 | 24.67 | 37 | 0.7519 | 0.7143 | | 1.0291 | 26.0 | 39 | 0.7489 | 0.6667 | | 0.712 | 26.67 | 40 | 0.5267 | 0.8095 | | 0.712 | 28.0 | 42 | 0.6166 | 0.7619 | | 0.712 | 28.67 | 43 | 0.7873 | 0.7143 | | 0.712 | 30.0 | 45 | 0.8388 | 0.7619 | | 0.712 | 30.67 | 46 | 0.7831 | 0.7381 | | 0.712 | 32.0 | 48 | 0.7151 | 0.7619 | | 0.712 | 32.67 | 49 | 0.7126 | 0.7619 | | 0.4557 | 33.33 | 50 | 0.7197 | 0.7619 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1