File size: 4,815 Bytes
0bfc8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_sgd_0001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.26666666666666666
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_tiny_sgd_0001_fold1

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5185
- Accuracy: 0.2667

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5559        | 1.0   | 27   | 1.6659          | 0.2667   |
| 1.5307        | 2.0   | 54   | 1.6510          | 0.2667   |
| 1.5463        | 3.0   | 81   | 1.6380          | 0.2889   |
| 1.5241        | 4.0   | 108  | 1.6272          | 0.2889   |
| 1.4794        | 5.0   | 135  | 1.6169          | 0.2889   |
| 1.5071        | 6.0   | 162  | 1.6070          | 0.2889   |
| 1.4768        | 7.0   | 189  | 1.5986          | 0.2889   |
| 1.4869        | 8.0   | 216  | 1.5910          | 0.2889   |
| 1.4651        | 9.0   | 243  | 1.5844          | 0.3111   |
| 1.4396        | 10.0  | 270  | 1.5781          | 0.3111   |
| 1.4572        | 11.0  | 297  | 1.5728          | 0.3111   |
| 1.4029        | 12.0  | 324  | 1.5680          | 0.3111   |
| 1.4355        | 13.0  | 351  | 1.5638          | 0.3111   |
| 1.4582        | 14.0  | 378  | 1.5597          | 0.2889   |
| 1.4073        | 15.0  | 405  | 1.5561          | 0.2889   |
| 1.4381        | 16.0  | 432  | 1.5526          | 0.2889   |
| 1.4333        | 17.0  | 459  | 1.5495          | 0.2889   |
| 1.3978        | 18.0  | 486  | 1.5468          | 0.2889   |
| 1.3884        | 19.0  | 513  | 1.5441          | 0.2889   |
| 1.3796        | 20.0  | 540  | 1.5418          | 0.2889   |
| 1.4025        | 21.0  | 567  | 1.5397          | 0.2889   |
| 1.3822        | 22.0  | 594  | 1.5376          | 0.2889   |
| 1.3868        | 23.0  | 621  | 1.5359          | 0.2889   |
| 1.3907        | 24.0  | 648  | 1.5343          | 0.2889   |
| 1.38          | 25.0  | 675  | 1.5327          | 0.2667   |
| 1.3755        | 26.0  | 702  | 1.5313          | 0.2667   |
| 1.3485        | 27.0  | 729  | 1.5299          | 0.2667   |
| 1.3648        | 28.0  | 756  | 1.5287          | 0.2667   |
| 1.3797        | 29.0  | 783  | 1.5276          | 0.2667   |
| 1.3716        | 30.0  | 810  | 1.5265          | 0.2667   |
| 1.389         | 31.0  | 837  | 1.5256          | 0.2667   |
| 1.3813        | 32.0  | 864  | 1.5247          | 0.2667   |
| 1.3289        | 33.0  | 891  | 1.5240          | 0.2667   |
| 1.3517        | 34.0  | 918  | 1.5232          | 0.2667   |
| 1.3834        | 35.0  | 945  | 1.5225          | 0.2667   |
| 1.3458        | 36.0  | 972  | 1.5218          | 0.2667   |
| 1.3745        | 37.0  | 999  | 1.5212          | 0.2667   |
| 1.3761        | 38.0  | 1026 | 1.5207          | 0.2667   |
| 1.3726        | 39.0  | 1053 | 1.5203          | 0.2667   |
| 1.3125        | 40.0  | 1080 | 1.5199          | 0.2667   |
| 1.3599        | 41.0  | 1107 | 1.5196          | 0.2667   |
| 1.3277        | 42.0  | 1134 | 1.5193          | 0.2667   |
| 1.3748        | 43.0  | 1161 | 1.5191          | 0.2667   |
| 1.3689        | 44.0  | 1188 | 1.5188          | 0.2667   |
| 1.3379        | 45.0  | 1215 | 1.5187          | 0.2667   |
| 1.3358        | 46.0  | 1242 | 1.5186          | 0.2667   |
| 1.3497        | 47.0  | 1269 | 1.5185          | 0.2667   |
| 1.3482        | 48.0  | 1296 | 1.5185          | 0.2667   |
| 1.3616        | 49.0  | 1323 | 1.5185          | 0.2667   |
| 1.3216        | 50.0  | 1350 | 1.5185          | 0.2667   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0