--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_tiny_sgd_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.85 --- # smids_10x_deit_tiny_sgd_0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3767 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.081 | 1.0 | 750 | 1.0837 | 0.4183 | | 0.9664 | 2.0 | 1500 | 0.9960 | 0.4867 | | 0.9109 | 3.0 | 2250 | 0.9172 | 0.5567 | | 0.8062 | 4.0 | 3000 | 0.8454 | 0.6017 | | 0.7721 | 5.0 | 3750 | 0.7755 | 0.6483 | | 0.6595 | 6.0 | 4500 | 0.7101 | 0.6883 | | 0.5526 | 7.0 | 5250 | 0.6552 | 0.715 | | 0.6103 | 8.0 | 6000 | 0.6092 | 0.7533 | | 0.6584 | 9.0 | 6750 | 0.5725 | 0.7633 | | 0.5611 | 10.0 | 7500 | 0.5452 | 0.7983 | | 0.5536 | 11.0 | 8250 | 0.5225 | 0.8067 | | 0.522 | 12.0 | 9000 | 0.5053 | 0.8117 | | 0.5314 | 13.0 | 9750 | 0.4913 | 0.8167 | | 0.4936 | 14.0 | 10500 | 0.4799 | 0.8267 | | 0.5195 | 15.0 | 11250 | 0.4692 | 0.8283 | | 0.4075 | 16.0 | 12000 | 0.4606 | 0.8283 | | 0.4566 | 17.0 | 12750 | 0.4529 | 0.8317 | | 0.4172 | 18.0 | 13500 | 0.4445 | 0.8367 | | 0.4556 | 19.0 | 14250 | 0.4390 | 0.83 | | 0.4667 | 20.0 | 15000 | 0.4334 | 0.8333 | | 0.3932 | 21.0 | 15750 | 0.4273 | 0.8333 | | 0.4625 | 22.0 | 16500 | 0.4229 | 0.8367 | | 0.418 | 23.0 | 17250 | 0.4180 | 0.8383 | | 0.3957 | 24.0 | 18000 | 0.4143 | 0.8367 | | 0.4114 | 25.0 | 18750 | 0.4106 | 0.8367 | | 0.4039 | 26.0 | 19500 | 0.4070 | 0.8367 | | 0.3652 | 27.0 | 20250 | 0.4039 | 0.84 | | 0.3862 | 28.0 | 21000 | 0.4011 | 0.84 | | 0.4364 | 29.0 | 21750 | 0.3984 | 0.84 | | 0.3781 | 30.0 | 22500 | 0.3966 | 0.8417 | | 0.3636 | 31.0 | 23250 | 0.3941 | 0.8383 | | 0.3588 | 32.0 | 24000 | 0.3920 | 0.84 | | 0.4007 | 33.0 | 24750 | 0.3903 | 0.8417 | | 0.3328 | 34.0 | 25500 | 0.3888 | 0.84 | | 0.3699 | 35.0 | 26250 | 0.3865 | 0.8417 | | 0.3686 | 36.0 | 27000 | 0.3852 | 0.8433 | | 0.315 | 37.0 | 27750 | 0.3840 | 0.8467 | | 0.3799 | 38.0 | 28500 | 0.3828 | 0.8467 | | 0.3659 | 39.0 | 29250 | 0.3817 | 0.8467 | | 0.3715 | 40.0 | 30000 | 0.3806 | 0.8467 | | 0.3582 | 41.0 | 30750 | 0.3798 | 0.8467 | | 0.4093 | 42.0 | 31500 | 0.3792 | 0.8483 | | 0.3651 | 43.0 | 32250 | 0.3786 | 0.8483 | | 0.3713 | 44.0 | 33000 | 0.3782 | 0.85 | | 0.3675 | 45.0 | 33750 | 0.3776 | 0.85 | | 0.3336 | 46.0 | 34500 | 0.3773 | 0.85 | | 0.4464 | 47.0 | 35250 | 0.3769 | 0.85 | | 0.3703 | 48.0 | 36000 | 0.3768 | 0.85 | | 0.366 | 49.0 | 36750 | 0.3767 | 0.85 | | 0.311 | 50.0 | 37500 | 0.3767 | 0.85 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2