--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_tiny_rms_0001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8981636060100167 --- # smids_3x_deit_tiny_rms_0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8923 - Accuracy: 0.8982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4584 | 1.0 | 226 | 0.3564 | 0.8414 | | 0.3047 | 2.0 | 452 | 0.3557 | 0.8614 | | 0.2416 | 3.0 | 678 | 0.4578 | 0.8097 | | 0.1428 | 4.0 | 904 | 0.4233 | 0.8631 | | 0.1227 | 5.0 | 1130 | 0.4440 | 0.8698 | | 0.1524 | 6.0 | 1356 | 0.3981 | 0.8915 | | 0.0691 | 7.0 | 1582 | 0.5148 | 0.8932 | | 0.0615 | 8.0 | 1808 | 0.6305 | 0.8581 | | 0.1111 | 9.0 | 2034 | 0.5927 | 0.8848 | | 0.0229 | 10.0 | 2260 | 0.6397 | 0.8932 | | 0.0429 | 11.0 | 2486 | 0.8816 | 0.8497 | | 0.0206 | 12.0 | 2712 | 0.6220 | 0.8815 | | 0.0864 | 13.0 | 2938 | 0.9519 | 0.8481 | | 0.0084 | 14.0 | 3164 | 0.6931 | 0.8898 | | 0.0377 | 15.0 | 3390 | 0.7392 | 0.8815 | | 0.0362 | 16.0 | 3616 | 0.8551 | 0.8581 | | 0.0572 | 17.0 | 3842 | 0.7247 | 0.8698 | | 0.1009 | 18.0 | 4068 | 0.6228 | 0.8715 | | 0.0504 | 19.0 | 4294 | 0.8902 | 0.8648 | | 0.0251 | 20.0 | 4520 | 0.7786 | 0.8831 | | 0.0065 | 21.0 | 4746 | 0.9795 | 0.8781 | | 0.0845 | 22.0 | 4972 | 0.7973 | 0.8815 | | 0.0036 | 23.0 | 5198 | 0.8709 | 0.8648 | | 0.0477 | 24.0 | 5424 | 0.8349 | 0.8781 | | 0.0002 | 25.0 | 5650 | 0.8199 | 0.8781 | | 0.0014 | 26.0 | 5876 | 1.0541 | 0.8648 | | 0.0123 | 27.0 | 6102 | 0.9016 | 0.8798 | | 0.0001 | 28.0 | 6328 | 0.7666 | 0.8881 | | 0.0 | 29.0 | 6554 | 0.7915 | 0.8881 | | 0.0004 | 30.0 | 6780 | 0.9036 | 0.8881 | | 0.0001 | 31.0 | 7006 | 0.8349 | 0.8932 | | 0.0 | 32.0 | 7232 | 0.8309 | 0.8848 | | 0.0025 | 33.0 | 7458 | 0.8690 | 0.8932 | | 0.0 | 34.0 | 7684 | 0.9464 | 0.8848 | | 0.0312 | 35.0 | 7910 | 0.9721 | 0.8881 | | 0.0 | 36.0 | 8136 | 0.9282 | 0.8848 | | 0.0 | 37.0 | 8362 | 0.8805 | 0.8915 | | 0.0 | 38.0 | 8588 | 0.8709 | 0.8948 | | 0.0 | 39.0 | 8814 | 0.8888 | 0.8915 | | 0.0 | 40.0 | 9040 | 0.8303 | 0.9015 | | 0.0028 | 41.0 | 9266 | 0.8497 | 0.8965 | | 0.0031 | 42.0 | 9492 | 0.8601 | 0.8932 | | 0.0 | 43.0 | 9718 | 0.8400 | 0.8932 | | 0.0 | 44.0 | 9944 | 0.8634 | 0.8965 | | 0.0 | 45.0 | 10170 | 0.8516 | 0.9015 | | 0.0 | 46.0 | 10396 | 0.9026 | 0.8948 | | 0.0 | 47.0 | 10622 | 0.8950 | 0.9015 | | 0.0 | 48.0 | 10848 | 0.8925 | 0.8998 | | 0.0 | 49.0 | 11074 | 0.8907 | 0.8982 | | 0.0 | 50.0 | 11300 | 0.8923 | 0.8982 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2