File size: 23,977 Bytes
0e1a960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-13 08:32:58,176 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,176 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 Train:  1100 sentences
2023-10-13 08:32:58,177         (train_with_dev=False, train_with_test=False)
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 Training Params:
2023-10-13 08:32:58,177  - learning_rate: "5e-05" 
2023-10-13 08:32:58,177  - mini_batch_size: "4"
2023-10-13 08:32:58,177  - max_epochs: "10"
2023-10-13 08:32:58,177  - shuffle: "True"
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 Plugins:
2023-10-13 08:32:58,177  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:32:58,177  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 Computation:
2023-10-13 08:32:58,177  - compute on device: cuda:0
2023-10-13 08:32:58,177  - embedding storage: none
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:58,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:32:59,590 epoch 1 - iter 27/275 - loss 3.04714313 - time (sec): 1.41 - samples/sec: 1715.29 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:33:00,991 epoch 1 - iter 54/275 - loss 2.39413413 - time (sec): 2.81 - samples/sec: 1613.81 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:33:02,339 epoch 1 - iter 81/275 - loss 1.84617130 - time (sec): 4.16 - samples/sec: 1644.84 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:33:03,683 epoch 1 - iter 108/275 - loss 1.54588332 - time (sec): 5.50 - samples/sec: 1641.17 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:33:05,047 epoch 1 - iter 135/275 - loss 1.36800336 - time (sec): 6.87 - samples/sec: 1643.09 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:33:06,382 epoch 1 - iter 162/275 - loss 1.24026566 - time (sec): 8.20 - samples/sec: 1617.43 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:33:07,765 epoch 1 - iter 189/275 - loss 1.10610285 - time (sec): 9.59 - samples/sec: 1637.41 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:33:09,127 epoch 1 - iter 216/275 - loss 1.00254786 - time (sec): 10.95 - samples/sec: 1630.58 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:33:10,472 epoch 1 - iter 243/275 - loss 0.93102179 - time (sec): 12.29 - samples/sec: 1634.52 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:33:11,832 epoch 1 - iter 270/275 - loss 0.86490296 - time (sec): 13.65 - samples/sec: 1631.39 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:33:12,079 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:12,079 EPOCH 1 done: loss 0.8551 - lr: 0.000049
2023-10-13 08:33:12,632 DEV : loss 0.19248613715171814 - f1-score (micro avg)  0.6941
2023-10-13 08:33:12,637 saving best model
2023-10-13 08:33:13,091 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:14,445 epoch 2 - iter 27/275 - loss 0.16238864 - time (sec): 1.35 - samples/sec: 1532.54 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:33:15,900 epoch 2 - iter 54/275 - loss 0.18066758 - time (sec): 2.81 - samples/sec: 1584.43 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:33:17,453 epoch 2 - iter 81/275 - loss 0.18789539 - time (sec): 4.36 - samples/sec: 1551.04 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:33:18,974 epoch 2 - iter 108/275 - loss 0.18090485 - time (sec): 5.88 - samples/sec: 1580.07 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:33:20,428 epoch 2 - iter 135/275 - loss 0.18258663 - time (sec): 7.34 - samples/sec: 1593.69 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:33:21,915 epoch 2 - iter 162/275 - loss 0.17760713 - time (sec): 8.82 - samples/sec: 1571.78 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:33:23,388 epoch 2 - iter 189/275 - loss 0.17570702 - time (sec): 10.30 - samples/sec: 1553.06 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:33:24,843 epoch 2 - iter 216/275 - loss 0.17496155 - time (sec): 11.75 - samples/sec: 1554.44 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:33:26,285 epoch 2 - iter 243/275 - loss 0.16582306 - time (sec): 13.19 - samples/sec: 1548.36 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:33:27,687 epoch 2 - iter 270/275 - loss 0.16263694 - time (sec): 14.60 - samples/sec: 1531.95 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:33:27,950 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:27,950 EPOCH 2 done: loss 0.1656 - lr: 0.000045
2023-10-13 08:33:28,614 DEV : loss 0.14798402786254883 - f1-score (micro avg)  0.8053
2023-10-13 08:33:28,620 saving best model
2023-10-13 08:33:29,177 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:30,521 epoch 3 - iter 27/275 - loss 0.11126465 - time (sec): 1.34 - samples/sec: 1708.17 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:33:31,839 epoch 3 - iter 54/275 - loss 0.13183460 - time (sec): 2.66 - samples/sec: 1745.63 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:33:33,210 epoch 3 - iter 81/275 - loss 0.12195720 - time (sec): 4.03 - samples/sec: 1712.27 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:33:34,559 epoch 3 - iter 108/275 - loss 0.10632686 - time (sec): 5.38 - samples/sec: 1687.34 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:33:36,112 epoch 3 - iter 135/275 - loss 0.12078275 - time (sec): 6.93 - samples/sec: 1658.65 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:33:37,472 epoch 3 - iter 162/275 - loss 0.12131658 - time (sec): 8.29 - samples/sec: 1634.39 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:33:38,827 epoch 3 - iter 189/275 - loss 0.11383941 - time (sec): 9.65 - samples/sec: 1638.61 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:33:40,153 epoch 3 - iter 216/275 - loss 0.11546269 - time (sec): 10.97 - samples/sec: 1636.87 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:33:41,437 epoch 3 - iter 243/275 - loss 0.11394532 - time (sec): 12.26 - samples/sec: 1654.98 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:33:42,750 epoch 3 - iter 270/275 - loss 0.11132217 - time (sec): 13.57 - samples/sec: 1650.18 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:33:42,992 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:42,992 EPOCH 3 done: loss 0.1098 - lr: 0.000039
2023-10-13 08:33:43,651 DEV : loss 0.15066391229629517 - f1-score (micro avg)  0.8683
2023-10-13 08:33:43,655 saving best model
2023-10-13 08:33:44,168 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:45,527 epoch 4 - iter 27/275 - loss 0.07288362 - time (sec): 1.36 - samples/sec: 1647.79 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:33:46,866 epoch 4 - iter 54/275 - loss 0.08201905 - time (sec): 2.69 - samples/sec: 1633.87 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:33:48,227 epoch 4 - iter 81/275 - loss 0.06593952 - time (sec): 4.06 - samples/sec: 1673.94 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:33:49,487 epoch 4 - iter 108/275 - loss 0.07562373 - time (sec): 5.31 - samples/sec: 1664.35 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:33:50,855 epoch 4 - iter 135/275 - loss 0.08332220 - time (sec): 6.68 - samples/sec: 1668.38 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:33:52,160 epoch 4 - iter 162/275 - loss 0.08850509 - time (sec): 7.99 - samples/sec: 1682.81 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:33:53,511 epoch 4 - iter 189/275 - loss 0.08602280 - time (sec): 9.34 - samples/sec: 1681.52 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:33:54,809 epoch 4 - iter 216/275 - loss 0.08576882 - time (sec): 10.64 - samples/sec: 1672.65 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:33:56,046 epoch 4 - iter 243/275 - loss 0.08711784 - time (sec): 11.87 - samples/sec: 1668.91 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:33:57,413 epoch 4 - iter 270/275 - loss 0.08385358 - time (sec): 13.24 - samples/sec: 1688.44 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:33:57,672 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:57,672 EPOCH 4 done: loss 0.0823 - lr: 0.000034
2023-10-13 08:33:58,348 DEV : loss 0.16972072422504425 - f1-score (micro avg)  0.862
2023-10-13 08:33:58,353 ----------------------------------------------------------------------------------------------------
2023-10-13 08:33:59,758 epoch 5 - iter 27/275 - loss 0.07002550 - time (sec): 1.40 - samples/sec: 1740.87 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:34:01,112 epoch 5 - iter 54/275 - loss 0.06055068 - time (sec): 2.76 - samples/sec: 1732.26 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:34:02,400 epoch 5 - iter 81/275 - loss 0.06519177 - time (sec): 4.05 - samples/sec: 1706.49 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:34:03,705 epoch 5 - iter 108/275 - loss 0.06009494 - time (sec): 5.35 - samples/sec: 1700.34 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:34:05,015 epoch 5 - iter 135/275 - loss 0.06524965 - time (sec): 6.66 - samples/sec: 1694.87 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:34:06,339 epoch 5 - iter 162/275 - loss 0.05954754 - time (sec): 7.98 - samples/sec: 1666.38 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:34:07,788 epoch 5 - iter 189/275 - loss 0.05966031 - time (sec): 9.43 - samples/sec: 1652.36 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:34:09,041 epoch 5 - iter 216/275 - loss 0.06153642 - time (sec): 10.69 - samples/sec: 1656.70 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:34:10,238 epoch 5 - iter 243/275 - loss 0.05870686 - time (sec): 11.88 - samples/sec: 1696.66 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:34:11,375 epoch 5 - iter 270/275 - loss 0.05725721 - time (sec): 13.02 - samples/sec: 1716.58 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:34:11,615 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:11,615 EPOCH 5 done: loss 0.0598 - lr: 0.000028
2023-10-13 08:34:12,370 DEV : loss 0.13807880878448486 - f1-score (micro avg)  0.8786
2023-10-13 08:34:12,375 saving best model
2023-10-13 08:34:12,930 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:14,288 epoch 6 - iter 27/275 - loss 0.05119173 - time (sec): 1.36 - samples/sec: 1736.70 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:34:15,602 epoch 6 - iter 54/275 - loss 0.04997304 - time (sec): 2.67 - samples/sec: 1775.66 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:34:16,926 epoch 6 - iter 81/275 - loss 0.04700888 - time (sec): 3.99 - samples/sec: 1682.59 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:34:18,154 epoch 6 - iter 108/275 - loss 0.04478485 - time (sec): 5.22 - samples/sec: 1696.14 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:34:19,394 epoch 6 - iter 135/275 - loss 0.04564487 - time (sec): 6.46 - samples/sec: 1723.93 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:34:20,689 epoch 6 - iter 162/275 - loss 0.04178622 - time (sec): 7.76 - samples/sec: 1718.19 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:34:21,994 epoch 6 - iter 189/275 - loss 0.04548401 - time (sec): 9.06 - samples/sec: 1701.43 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:34:23,397 epoch 6 - iter 216/275 - loss 0.04335930 - time (sec): 10.47 - samples/sec: 1692.68 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:34:24,713 epoch 6 - iter 243/275 - loss 0.04768471 - time (sec): 11.78 - samples/sec: 1713.43 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:34:25,961 epoch 6 - iter 270/275 - loss 0.04520765 - time (sec): 13.03 - samples/sec: 1722.15 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:34:26,192 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:26,192 EPOCH 6 done: loss 0.0459 - lr: 0.000022
2023-10-13 08:34:26,895 DEV : loss 0.13942967355251312 - f1-score (micro avg)  0.8851
2023-10-13 08:34:26,901 saving best model
2023-10-13 08:34:27,430 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:28,683 epoch 7 - iter 27/275 - loss 0.03084838 - time (sec): 1.25 - samples/sec: 1815.41 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:34:29,955 epoch 7 - iter 54/275 - loss 0.02247843 - time (sec): 2.52 - samples/sec: 1693.69 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:34:31,233 epoch 7 - iter 81/275 - loss 0.03578498 - time (sec): 3.80 - samples/sec: 1744.88 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:34:32,512 epoch 7 - iter 108/275 - loss 0.02970659 - time (sec): 5.08 - samples/sec: 1755.06 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:34:33,722 epoch 7 - iter 135/275 - loss 0.03215910 - time (sec): 6.29 - samples/sec: 1780.84 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:34:34,977 epoch 7 - iter 162/275 - loss 0.03234887 - time (sec): 7.55 - samples/sec: 1779.39 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:34:36,309 epoch 7 - iter 189/275 - loss 0.03111690 - time (sec): 8.88 - samples/sec: 1782.54 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:34:37,608 epoch 7 - iter 216/275 - loss 0.03139334 - time (sec): 10.18 - samples/sec: 1757.77 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:34:38,916 epoch 7 - iter 243/275 - loss 0.02834597 - time (sec): 11.48 - samples/sec: 1758.49 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:34:40,177 epoch 7 - iter 270/275 - loss 0.03079822 - time (sec): 12.75 - samples/sec: 1754.29 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:34:40,411 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:40,411 EPOCH 7 done: loss 0.0308 - lr: 0.000017
2023-10-13 08:34:41,083 DEV : loss 0.15453596413135529 - f1-score (micro avg)  0.868
2023-10-13 08:34:41,088 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:42,342 epoch 8 - iter 27/275 - loss 0.02109382 - time (sec): 1.25 - samples/sec: 1829.33 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:34:43,603 epoch 8 - iter 54/275 - loss 0.02025858 - time (sec): 2.51 - samples/sec: 1758.34 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:34:44,808 epoch 8 - iter 81/275 - loss 0.01822485 - time (sec): 3.72 - samples/sec: 1807.99 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:34:45,995 epoch 8 - iter 108/275 - loss 0.02322727 - time (sec): 4.90 - samples/sec: 1864.65 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:34:47,265 epoch 8 - iter 135/275 - loss 0.02349216 - time (sec): 6.18 - samples/sec: 1838.39 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:34:48,489 epoch 8 - iter 162/275 - loss 0.02354132 - time (sec): 7.40 - samples/sec: 1839.28 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:34:49,672 epoch 8 - iter 189/275 - loss 0.02656606 - time (sec): 8.58 - samples/sec: 1843.38 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:34:50,879 epoch 8 - iter 216/275 - loss 0.02469785 - time (sec): 9.79 - samples/sec: 1814.71 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:34:52,072 epoch 8 - iter 243/275 - loss 0.02272723 - time (sec): 10.98 - samples/sec: 1825.49 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:34:53,263 epoch 8 - iter 270/275 - loss 0.02072684 - time (sec): 12.17 - samples/sec: 1831.08 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:34:53,482 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:53,482 EPOCH 8 done: loss 0.0220 - lr: 0.000011
2023-10-13 08:34:54,207 DEV : loss 0.1433096081018448 - f1-score (micro avg)  0.8977
2023-10-13 08:34:54,212 saving best model
2023-10-13 08:34:54,706 ----------------------------------------------------------------------------------------------------
2023-10-13 08:34:55,954 epoch 9 - iter 27/275 - loss 0.02665393 - time (sec): 1.25 - samples/sec: 1821.64 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:34:57,125 epoch 9 - iter 54/275 - loss 0.01402467 - time (sec): 2.42 - samples/sec: 1798.96 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:34:58,276 epoch 9 - iter 81/275 - loss 0.01312050 - time (sec): 3.57 - samples/sec: 1846.45 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:34:59,425 epoch 9 - iter 108/275 - loss 0.01317766 - time (sec): 4.72 - samples/sec: 1811.17 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:35:00,589 epoch 9 - iter 135/275 - loss 0.01744292 - time (sec): 5.88 - samples/sec: 1893.37 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:35:01,743 epoch 9 - iter 162/275 - loss 0.01660356 - time (sec): 7.03 - samples/sec: 1934.90 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:35:02,999 epoch 9 - iter 189/275 - loss 0.01454803 - time (sec): 8.29 - samples/sec: 1909.02 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:35:04,237 epoch 9 - iter 216/275 - loss 0.01546288 - time (sec): 9.53 - samples/sec: 1892.29 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:35:05,448 epoch 9 - iter 243/275 - loss 0.01444547 - time (sec): 10.74 - samples/sec: 1874.69 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:35:06,649 epoch 9 - iter 270/275 - loss 0.01579205 - time (sec): 11.94 - samples/sec: 1869.33 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:35:06,875 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:06,875 EPOCH 9 done: loss 0.0162 - lr: 0.000006
2023-10-13 08:35:07,535 DEV : loss 0.14539609849452972 - f1-score (micro avg)  0.8889
2023-10-13 08:35:07,539 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:08,782 epoch 10 - iter 27/275 - loss 0.03744018 - time (sec): 1.24 - samples/sec: 1843.69 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:35:10,005 epoch 10 - iter 54/275 - loss 0.04391229 - time (sec): 2.46 - samples/sec: 1855.68 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:35:11,278 epoch 10 - iter 81/275 - loss 0.02903518 - time (sec): 3.74 - samples/sec: 1869.23 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:35:12,519 epoch 10 - iter 108/275 - loss 0.02592698 - time (sec): 4.98 - samples/sec: 1831.08 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:35:13,713 epoch 10 - iter 135/275 - loss 0.02103490 - time (sec): 6.17 - samples/sec: 1824.56 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:35:14,892 epoch 10 - iter 162/275 - loss 0.01951085 - time (sec): 7.35 - samples/sec: 1875.40 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:35:16,076 epoch 10 - iter 189/275 - loss 0.01714763 - time (sec): 8.54 - samples/sec: 1859.96 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:35:17,272 epoch 10 - iter 216/275 - loss 0.01515363 - time (sec): 9.73 - samples/sec: 1849.93 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:35:18,480 epoch 10 - iter 243/275 - loss 0.01499240 - time (sec): 10.94 - samples/sec: 1835.33 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:35:19,746 epoch 10 - iter 270/275 - loss 0.01408694 - time (sec): 12.21 - samples/sec: 1824.85 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:35:19,970 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:19,971 EPOCH 10 done: loss 0.0138 - lr: 0.000000
2023-10-13 08:35:20,618 DEV : loss 0.14501692354679108 - f1-score (micro avg)  0.8921
2023-10-13 08:35:20,989 ----------------------------------------------------------------------------------------------------
2023-10-13 08:35:20,991 Loading model from best epoch ...
2023-10-13 08:35:22,653 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:35:23,442 
Results:
- F-score (micro) 0.9062
- F-score (macro) 0.8756
- Accuracy 0.8366

By class:
              precision    recall  f1-score   support

       scope     0.8851    0.8750    0.8800       176
        pers     0.9919    0.9531    0.9721       128
        work     0.8533    0.8649    0.8591        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9147    0.8979    0.9062       382
   macro avg     0.9461    0.8386    0.8756       382
weighted avg     0.9159    0.8979    0.9063       382

2023-10-13 08:35:23,443 ----------------------------------------------------------------------------------------------------