File size: 23,944 Bytes
e3f791b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-13 11:07:50,255 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,256 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 11:07:50,256 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,256 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 Train:  966 sentences
2023-10-13 11:07:50,257         (train_with_dev=False, train_with_test=False)
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 Training Params:
2023-10-13 11:07:50,257  - learning_rate: "5e-05" 
2023-10-13 11:07:50,257  - mini_batch_size: "4"
2023-10-13 11:07:50,257  - max_epochs: "10"
2023-10-13 11:07:50,257  - shuffle: "True"
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 Plugins:
2023-10-13 11:07:50,257  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 11:07:50,257  - metric: "('micro avg', 'f1-score')"
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 Computation:
2023-10-13 11:07:50,257  - compute on device: cuda:0
2023-10-13 11:07:50,257  - embedding storage: none
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:50,257 ----------------------------------------------------------------------------------------------------
2023-10-13 11:07:51,349 epoch 1 - iter 24/242 - loss 3.18371892 - time (sec): 1.09 - samples/sec: 2014.36 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:07:52,451 epoch 1 - iter 48/242 - loss 2.57596024 - time (sec): 2.19 - samples/sec: 2197.83 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:07:53,520 epoch 1 - iter 72/242 - loss 1.95454570 - time (sec): 3.26 - samples/sec: 2210.52 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:07:54,630 epoch 1 - iter 96/242 - loss 1.58160402 - time (sec): 4.37 - samples/sec: 2274.47 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:07:55,735 epoch 1 - iter 120/242 - loss 1.37388781 - time (sec): 5.48 - samples/sec: 2274.02 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:07:56,807 epoch 1 - iter 144/242 - loss 1.22479270 - time (sec): 6.55 - samples/sec: 2225.17 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:07:57,917 epoch 1 - iter 168/242 - loss 1.10074637 - time (sec): 7.66 - samples/sec: 2240.57 - lr: 0.000035 - momentum: 0.000000
2023-10-13 11:07:58,997 epoch 1 - iter 192/242 - loss 1.00418203 - time (sec): 8.74 - samples/sec: 2238.04 - lr: 0.000039 - momentum: 0.000000
2023-10-13 11:08:00,089 epoch 1 - iter 216/242 - loss 0.92938882 - time (sec): 9.83 - samples/sec: 2223.02 - lr: 0.000044 - momentum: 0.000000
2023-10-13 11:08:01,205 epoch 1 - iter 240/242 - loss 0.85286162 - time (sec): 10.95 - samples/sec: 2236.10 - lr: 0.000049 - momentum: 0.000000
2023-10-13 11:08:01,298 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:01,299 EPOCH 1 done: loss 0.8448 - lr: 0.000049
2023-10-13 11:08:02,174 DEV : loss 0.20342281460762024 - f1-score (micro avg)  0.6
2023-10-13 11:08:02,179 saving best model
2023-10-13 11:08:02,540 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:03,647 epoch 2 - iter 24/242 - loss 0.22758628 - time (sec): 1.11 - samples/sec: 2334.16 - lr: 0.000049 - momentum: 0.000000
2023-10-13 11:08:04,716 epoch 2 - iter 48/242 - loss 0.21528058 - time (sec): 2.17 - samples/sec: 2390.69 - lr: 0.000049 - momentum: 0.000000
2023-10-13 11:08:05,784 epoch 2 - iter 72/242 - loss 0.22048385 - time (sec): 3.24 - samples/sec: 2270.24 - lr: 0.000048 - momentum: 0.000000
2023-10-13 11:08:06,890 epoch 2 - iter 96/242 - loss 0.20683587 - time (sec): 4.35 - samples/sec: 2282.48 - lr: 0.000048 - momentum: 0.000000
2023-10-13 11:08:07,953 epoch 2 - iter 120/242 - loss 0.19005376 - time (sec): 5.41 - samples/sec: 2263.80 - lr: 0.000047 - momentum: 0.000000
2023-10-13 11:08:09,036 epoch 2 - iter 144/242 - loss 0.18792079 - time (sec): 6.49 - samples/sec: 2270.81 - lr: 0.000047 - momentum: 0.000000
2023-10-13 11:08:10,154 epoch 2 - iter 168/242 - loss 0.18222929 - time (sec): 7.61 - samples/sec: 2270.44 - lr: 0.000046 - momentum: 0.000000
2023-10-13 11:08:11,258 epoch 2 - iter 192/242 - loss 0.17949989 - time (sec): 8.72 - samples/sec: 2269.25 - lr: 0.000046 - momentum: 0.000000
2023-10-13 11:08:12,348 epoch 2 - iter 216/242 - loss 0.17136972 - time (sec): 9.81 - samples/sec: 2271.24 - lr: 0.000045 - momentum: 0.000000
2023-10-13 11:08:13,402 epoch 2 - iter 240/242 - loss 0.16899960 - time (sec): 10.86 - samples/sec: 2268.54 - lr: 0.000045 - momentum: 0.000000
2023-10-13 11:08:13,487 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:13,487 EPOCH 2 done: loss 0.1698 - lr: 0.000045
2023-10-13 11:08:14,272 DEV : loss 0.14844480156898499 - f1-score (micro avg)  0.7626
2023-10-13 11:08:14,277 saving best model
2023-10-13 11:08:14,744 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:15,898 epoch 3 - iter 24/242 - loss 0.10777340 - time (sec): 1.15 - samples/sec: 2145.43 - lr: 0.000044 - momentum: 0.000000
2023-10-13 11:08:17,068 epoch 3 - iter 48/242 - loss 0.12615430 - time (sec): 2.32 - samples/sec: 2127.10 - lr: 0.000043 - momentum: 0.000000
2023-10-13 11:08:18,176 epoch 3 - iter 72/242 - loss 0.11486814 - time (sec): 3.43 - samples/sec: 2038.06 - lr: 0.000043 - momentum: 0.000000
2023-10-13 11:08:19,257 epoch 3 - iter 96/242 - loss 0.10526047 - time (sec): 4.51 - samples/sec: 2116.82 - lr: 0.000042 - momentum: 0.000000
2023-10-13 11:08:20,358 epoch 3 - iter 120/242 - loss 0.12266542 - time (sec): 5.61 - samples/sec: 2158.18 - lr: 0.000042 - momentum: 0.000000
2023-10-13 11:08:21,436 epoch 3 - iter 144/242 - loss 0.12778498 - time (sec): 6.69 - samples/sec: 2200.90 - lr: 0.000041 - momentum: 0.000000
2023-10-13 11:08:22,539 epoch 3 - iter 168/242 - loss 0.11820235 - time (sec): 7.79 - samples/sec: 2227.12 - lr: 0.000041 - momentum: 0.000000
2023-10-13 11:08:23,616 epoch 3 - iter 192/242 - loss 0.12499658 - time (sec): 8.87 - samples/sec: 2225.14 - lr: 0.000040 - momentum: 0.000000
2023-10-13 11:08:24,672 epoch 3 - iter 216/242 - loss 0.11906164 - time (sec): 9.92 - samples/sec: 2208.90 - lr: 0.000040 - momentum: 0.000000
2023-10-13 11:08:25,750 epoch 3 - iter 240/242 - loss 0.11394204 - time (sec): 11.00 - samples/sec: 2227.03 - lr: 0.000039 - momentum: 0.000000
2023-10-13 11:08:25,836 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:25,837 EPOCH 3 done: loss 0.1131 - lr: 0.000039
2023-10-13 11:08:26,656 DEV : loss 0.1403370201587677 - f1-score (micro avg)  0.8243
2023-10-13 11:08:26,662 saving best model
2023-10-13 11:08:27,161 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:28,331 epoch 4 - iter 24/242 - loss 0.06596586 - time (sec): 1.17 - samples/sec: 2068.96 - lr: 0.000038 - momentum: 0.000000
2023-10-13 11:08:29,552 epoch 4 - iter 48/242 - loss 0.06831484 - time (sec): 2.39 - samples/sec: 2106.37 - lr: 0.000038 - momentum: 0.000000
2023-10-13 11:08:30,743 epoch 4 - iter 72/242 - loss 0.06654065 - time (sec): 3.58 - samples/sec: 2055.36 - lr: 0.000037 - momentum: 0.000000
2023-10-13 11:08:31,906 epoch 4 - iter 96/242 - loss 0.06398005 - time (sec): 4.74 - samples/sec: 2067.72 - lr: 0.000037 - momentum: 0.000000
2023-10-13 11:08:33,021 epoch 4 - iter 120/242 - loss 0.06641754 - time (sec): 5.86 - samples/sec: 2114.27 - lr: 0.000036 - momentum: 0.000000
2023-10-13 11:08:34,089 epoch 4 - iter 144/242 - loss 0.06951926 - time (sec): 6.93 - samples/sec: 2158.36 - lr: 0.000036 - momentum: 0.000000
2023-10-13 11:08:35,176 epoch 4 - iter 168/242 - loss 0.06799826 - time (sec): 8.01 - samples/sec: 2156.32 - lr: 0.000035 - momentum: 0.000000
2023-10-13 11:08:36,247 epoch 4 - iter 192/242 - loss 0.07037930 - time (sec): 9.09 - samples/sec: 2148.14 - lr: 0.000035 - momentum: 0.000000
2023-10-13 11:08:37,328 epoch 4 - iter 216/242 - loss 0.07292490 - time (sec): 10.17 - samples/sec: 2155.33 - lr: 0.000034 - momentum: 0.000000
2023-10-13 11:08:38,464 epoch 4 - iter 240/242 - loss 0.07036982 - time (sec): 11.30 - samples/sec: 2177.46 - lr: 0.000033 - momentum: 0.000000
2023-10-13 11:08:38,556 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:38,556 EPOCH 4 done: loss 0.0700 - lr: 0.000033
2023-10-13 11:08:39,398 DEV : loss 0.1509368121623993 - f1-score (micro avg)  0.8365
2023-10-13 11:08:39,404 saving best model
2023-10-13 11:08:39,914 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:41,015 epoch 5 - iter 24/242 - loss 0.07172988 - time (sec): 1.10 - samples/sec: 2410.95 - lr: 0.000033 - momentum: 0.000000
2023-10-13 11:08:42,079 epoch 5 - iter 48/242 - loss 0.07010272 - time (sec): 2.16 - samples/sec: 2314.26 - lr: 0.000032 - momentum: 0.000000
2023-10-13 11:08:43,161 epoch 5 - iter 72/242 - loss 0.05357899 - time (sec): 3.24 - samples/sec: 2241.95 - lr: 0.000032 - momentum: 0.000000
2023-10-13 11:08:44,258 epoch 5 - iter 96/242 - loss 0.06053123 - time (sec): 4.34 - samples/sec: 2252.25 - lr: 0.000031 - momentum: 0.000000
2023-10-13 11:08:45,328 epoch 5 - iter 120/242 - loss 0.06273107 - time (sec): 5.41 - samples/sec: 2268.25 - lr: 0.000031 - momentum: 0.000000
2023-10-13 11:08:46,377 epoch 5 - iter 144/242 - loss 0.05890511 - time (sec): 6.46 - samples/sec: 2288.21 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:08:47,452 epoch 5 - iter 168/242 - loss 0.06151768 - time (sec): 7.53 - samples/sec: 2314.99 - lr: 0.000030 - momentum: 0.000000
2023-10-13 11:08:48,608 epoch 5 - iter 192/242 - loss 0.05962828 - time (sec): 8.69 - samples/sec: 2285.31 - lr: 0.000029 - momentum: 0.000000
2023-10-13 11:08:49,735 epoch 5 - iter 216/242 - loss 0.05957175 - time (sec): 9.82 - samples/sec: 2286.62 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:08:50,786 epoch 5 - iter 240/242 - loss 0.05693543 - time (sec): 10.87 - samples/sec: 2264.38 - lr: 0.000028 - momentum: 0.000000
2023-10-13 11:08:50,868 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:50,868 EPOCH 5 done: loss 0.0572 - lr: 0.000028
2023-10-13 11:08:51,759 DEV : loss 0.18690580129623413 - f1-score (micro avg)  0.8143
2023-10-13 11:08:51,766 ----------------------------------------------------------------------------------------------------
2023-10-13 11:08:53,082 epoch 6 - iter 24/242 - loss 0.05722285 - time (sec): 1.31 - samples/sec: 1970.01 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:08:54,456 epoch 6 - iter 48/242 - loss 0.05244200 - time (sec): 2.69 - samples/sec: 1893.11 - lr: 0.000027 - momentum: 0.000000
2023-10-13 11:08:55,814 epoch 6 - iter 72/242 - loss 0.04904005 - time (sec): 4.05 - samples/sec: 1902.82 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:08:57,057 epoch 6 - iter 96/242 - loss 0.04467185 - time (sec): 5.29 - samples/sec: 1854.33 - lr: 0.000026 - momentum: 0.000000
2023-10-13 11:08:58,206 epoch 6 - iter 120/242 - loss 0.04420946 - time (sec): 6.44 - samples/sec: 1940.66 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:08:59,280 epoch 6 - iter 144/242 - loss 0.03970356 - time (sec): 7.51 - samples/sec: 1985.99 - lr: 0.000025 - momentum: 0.000000
2023-10-13 11:09:00,328 epoch 6 - iter 168/242 - loss 0.04408623 - time (sec): 8.56 - samples/sec: 1993.20 - lr: 0.000024 - momentum: 0.000000
2023-10-13 11:09:01,398 epoch 6 - iter 192/242 - loss 0.04034396 - time (sec): 9.63 - samples/sec: 2014.68 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:09:02,476 epoch 6 - iter 216/242 - loss 0.03986324 - time (sec): 10.71 - samples/sec: 2039.88 - lr: 0.000023 - momentum: 0.000000
2023-10-13 11:09:03,576 epoch 6 - iter 240/242 - loss 0.03959649 - time (sec): 11.81 - samples/sec: 2083.43 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:09:03,664 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:03,664 EPOCH 6 done: loss 0.0399 - lr: 0.000022
2023-10-13 11:09:04,432 DEV : loss 0.20703579485416412 - f1-score (micro avg)  0.8067
2023-10-13 11:09:04,437 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:05,523 epoch 7 - iter 24/242 - loss 0.01304402 - time (sec): 1.08 - samples/sec: 2354.20 - lr: 0.000022 - momentum: 0.000000
2023-10-13 11:09:06,615 epoch 7 - iter 48/242 - loss 0.01891244 - time (sec): 2.18 - samples/sec: 2320.61 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:09:07,679 epoch 7 - iter 72/242 - loss 0.02175415 - time (sec): 3.24 - samples/sec: 2271.91 - lr: 0.000021 - momentum: 0.000000
2023-10-13 11:09:08,749 epoch 7 - iter 96/242 - loss 0.02731527 - time (sec): 4.31 - samples/sec: 2262.01 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:09:09,812 epoch 7 - iter 120/242 - loss 0.03234705 - time (sec): 5.37 - samples/sec: 2276.02 - lr: 0.000020 - momentum: 0.000000
2023-10-13 11:09:10,923 epoch 7 - iter 144/242 - loss 0.02891570 - time (sec): 6.48 - samples/sec: 2285.96 - lr: 0.000019 - momentum: 0.000000
2023-10-13 11:09:11,986 epoch 7 - iter 168/242 - loss 0.02815719 - time (sec): 7.55 - samples/sec: 2295.21 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:09:13,061 epoch 7 - iter 192/242 - loss 0.02865721 - time (sec): 8.62 - samples/sec: 2270.16 - lr: 0.000018 - momentum: 0.000000
2023-10-13 11:09:14,140 epoch 7 - iter 216/242 - loss 0.02953733 - time (sec): 9.70 - samples/sec: 2277.81 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:09:15,223 epoch 7 - iter 240/242 - loss 0.02922147 - time (sec): 10.78 - samples/sec: 2274.96 - lr: 0.000017 - momentum: 0.000000
2023-10-13 11:09:15,311 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:15,311 EPOCH 7 done: loss 0.0290 - lr: 0.000017
2023-10-13 11:09:16,067 DEV : loss 0.203294038772583 - f1-score (micro avg)  0.8335
2023-10-13 11:09:16,072 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:17,175 epoch 8 - iter 24/242 - loss 0.02027913 - time (sec): 1.10 - samples/sec: 2439.39 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:09:18,248 epoch 8 - iter 48/242 - loss 0.02740789 - time (sec): 2.18 - samples/sec: 2388.95 - lr: 0.000016 - momentum: 0.000000
2023-10-13 11:09:19,334 epoch 8 - iter 72/242 - loss 0.02091675 - time (sec): 3.26 - samples/sec: 2361.24 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:09:20,420 epoch 8 - iter 96/242 - loss 0.02309290 - time (sec): 4.35 - samples/sec: 2349.70 - lr: 0.000015 - momentum: 0.000000
2023-10-13 11:09:21,490 epoch 8 - iter 120/242 - loss 0.02237206 - time (sec): 5.42 - samples/sec: 2367.97 - lr: 0.000014 - momentum: 0.000000
2023-10-13 11:09:22,599 epoch 8 - iter 144/242 - loss 0.02123187 - time (sec): 6.53 - samples/sec: 2329.24 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:09:23,709 epoch 8 - iter 168/242 - loss 0.02196109 - time (sec): 7.64 - samples/sec: 2288.74 - lr: 0.000013 - momentum: 0.000000
2023-10-13 11:09:24,804 epoch 8 - iter 192/242 - loss 0.02266697 - time (sec): 8.73 - samples/sec: 2269.13 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:09:25,914 epoch 8 - iter 216/242 - loss 0.02158182 - time (sec): 9.84 - samples/sec: 2271.83 - lr: 0.000012 - momentum: 0.000000
2023-10-13 11:09:26,980 epoch 8 - iter 240/242 - loss 0.02105113 - time (sec): 10.91 - samples/sec: 2260.99 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:09:27,061 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:27,061 EPOCH 8 done: loss 0.0210 - lr: 0.000011
2023-10-13 11:09:28,017 DEV : loss 0.19338418543338776 - f1-score (micro avg)  0.8507
2023-10-13 11:09:28,023 saving best model
2023-10-13 11:09:28,540 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:29,691 epoch 9 - iter 24/242 - loss 0.01795266 - time (sec): 1.15 - samples/sec: 2122.41 - lr: 0.000011 - momentum: 0.000000
2023-10-13 11:09:30,875 epoch 9 - iter 48/242 - loss 0.01915869 - time (sec): 2.33 - samples/sec: 2182.73 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:09:32,038 epoch 9 - iter 72/242 - loss 0.02158611 - time (sec): 3.49 - samples/sec: 2223.27 - lr: 0.000010 - momentum: 0.000000
2023-10-13 11:09:33,189 epoch 9 - iter 96/242 - loss 0.01719087 - time (sec): 4.65 - samples/sec: 2120.24 - lr: 0.000009 - momentum: 0.000000
2023-10-13 11:09:34,331 epoch 9 - iter 120/242 - loss 0.01594553 - time (sec): 5.79 - samples/sec: 2076.69 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:09:35,409 epoch 9 - iter 144/242 - loss 0.01441884 - time (sec): 6.87 - samples/sec: 2112.07 - lr: 0.000008 - momentum: 0.000000
2023-10-13 11:09:36,489 epoch 9 - iter 168/242 - loss 0.01395817 - time (sec): 7.95 - samples/sec: 2166.27 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:09:37,582 epoch 9 - iter 192/242 - loss 0.01254251 - time (sec): 9.04 - samples/sec: 2170.68 - lr: 0.000007 - momentum: 0.000000
2023-10-13 11:09:38,636 epoch 9 - iter 216/242 - loss 0.01437384 - time (sec): 10.09 - samples/sec: 2159.19 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:09:39,741 epoch 9 - iter 240/242 - loss 0.01382778 - time (sec): 11.20 - samples/sec: 2197.18 - lr: 0.000006 - momentum: 0.000000
2023-10-13 11:09:39,827 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:39,827 EPOCH 9 done: loss 0.0140 - lr: 0.000006
2023-10-13 11:09:40,667 DEV : loss 0.1840001940727234 - f1-score (micro avg)  0.8553
2023-10-13 11:09:40,673 saving best model
2023-10-13 11:09:41,174 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:42,272 epoch 10 - iter 24/242 - loss 0.00815395 - time (sec): 1.10 - samples/sec: 2217.13 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:09:43,373 epoch 10 - iter 48/242 - loss 0.01267221 - time (sec): 2.20 - samples/sec: 2360.19 - lr: 0.000005 - momentum: 0.000000
2023-10-13 11:09:44,445 epoch 10 - iter 72/242 - loss 0.00988114 - time (sec): 3.27 - samples/sec: 2277.47 - lr: 0.000004 - momentum: 0.000000
2023-10-13 11:09:45,514 epoch 10 - iter 96/242 - loss 0.01014757 - time (sec): 4.34 - samples/sec: 2212.92 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:09:46,614 epoch 10 - iter 120/242 - loss 0.00919350 - time (sec): 5.44 - samples/sec: 2298.46 - lr: 0.000003 - momentum: 0.000000
2023-10-13 11:09:47,695 epoch 10 - iter 144/242 - loss 0.00878841 - time (sec): 6.52 - samples/sec: 2280.14 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:09:48,784 epoch 10 - iter 168/242 - loss 0.01029727 - time (sec): 7.61 - samples/sec: 2258.55 - lr: 0.000002 - momentum: 0.000000
2023-10-13 11:09:49,851 epoch 10 - iter 192/242 - loss 0.01213754 - time (sec): 8.67 - samples/sec: 2239.26 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:09:50,933 epoch 10 - iter 216/242 - loss 0.01112444 - time (sec): 9.76 - samples/sec: 2245.84 - lr: 0.000001 - momentum: 0.000000
2023-10-13 11:09:52,058 epoch 10 - iter 240/242 - loss 0.01028077 - time (sec): 10.88 - samples/sec: 2257.48 - lr: 0.000000 - momentum: 0.000000
2023-10-13 11:09:52,141 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:52,142 EPOCH 10 done: loss 0.0102 - lr: 0.000000
2023-10-13 11:09:52,913 DEV : loss 0.19032004475593567 - f1-score (micro avg)  0.8468
2023-10-13 11:09:53,275 ----------------------------------------------------------------------------------------------------
2023-10-13 11:09:53,276 Loading model from best epoch ...
2023-10-13 11:09:54,656 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 11:09:55,491 
Results:
- F-score (micro) 0.8235
- F-score (macro) 0.5974
- Accuracy 0.7146

By class:
              precision    recall  f1-score   support

        pers     0.8581    0.9137    0.8850       139
       scope     0.8156    0.8915    0.8519       129
        work     0.6667    0.7750    0.7168        80
         loc     0.6667    0.4444    0.5333         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7938    0.8556    0.8235       360
   macro avg     0.6014    0.6049    0.5974       360
weighted avg     0.7884    0.8556    0.8196       360

2023-10-13 11:09:55,491 ----------------------------------------------------------------------------------------------------