File size: 4,584 Bytes
b2be70b fa693ae b2be70b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language: fr
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-base-historic-multilingual-cased
widget:
- text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les
tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi ,
719 , 826 , 4496 .
---
# Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022)
This Flair model was fine-tuned on the
[AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
NER Dataset using hmBERT as backbone LM.
The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
project.
The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[8, 4]`
* Learning Rates: `[3e-05, 5e-05]`
And report micro F1-score on development set:
| Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|
| bs4-e10-lr5e-05 | [0.8436][1] | [0.8287][2] | [0.8475][3] | [0.8455][4] | [0.8553][5] | 84.41 ± 0.87 |
| bs8-e10-lr3e-05 | [0.8228][6] | [0.8407][7] | [0.8557][8] | [0.8532][9] | [0.8385][10] | 84.22 ± 1.18 |
| bs4-e10-lr3e-05 | [0.8202][11] | [0.8519][12] | [0.8434][13] | [0.8418][14] | [0.8436][15] | 84.02 ± 1.06 |
| bs8-e10-lr5e-05 | [0.8333][16] | [0.8338][17] | [0.8394][18] | [0.8409][19] | [0.8504][20] | 83.96 ± 0.62 |
[1]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️
|