--- language: fr license: mit tags: - flair - token-classification - sequence-tagger-model base_model: dbmdz/bert-base-historic-multilingual-cased widget: - text: — 469 . Πεδία . Les tribraques formés par un seul mot sont rares chez les tragiques , partont ailleurs qu ’ au premier pied . CÉ . cependant QEd , Roi , 719 , 826 , 4496 . --- # Fine-tuned Flair Model on AjMC French NER Dataset (HIPE-2022) This Flair model was fine-tuned on the [AjMC French](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md) NER Dataset using hmBERT as backbone LM. The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics, and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/) project. The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`. # Results We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration: * Batch Sizes: `[8, 4]` * Learning Rates: `[3e-05, 5e-05]` And report micro F1-score on development set: | Configuration | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Avg. | |-----------------|--------------|--------------|--------------|--------------|--------------|--------------| | bs4-e10-lr5e-05 | [0.8436][1] | [0.8287][2] | [0.8475][3] | [0.8455][4] | [0.8553][5] | 84.41 ± 0.87 | | bs8-e10-lr3e-05 | [0.8228][6] | [0.8407][7] | [0.8557][8] | [0.8532][9] | [0.8385][10] | 84.22 ± 1.18 | | bs4-e10-lr3e-05 | [0.8202][11] | [0.8519][12] | [0.8434][13] | [0.8418][14] | [0.8436][15] | 84.02 ± 1.06 | | bs8-e10-lr5e-05 | [0.8333][16] | [0.8338][17] | [0.8394][18] | [0.8409][19] | [0.8504][20] | 83.96 ± 0.62 | [1]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [2]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [3]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [4]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [5]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 [6]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [7]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [8]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [9]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [10]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [11]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1 [12]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2 [13]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3 [14]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4 [15]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5 [16]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1 [17]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2 [18]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3 [19]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4 [20]: https://hf.co/hmbench/hmbench-ajmc-fr-hmbert-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5 The [training log](training.log) and TensorBoard logs (only for hmByT5 and hmTEAMS based models) are also uploaded to the model hub. More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench). # Acknowledgements We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and [Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models. Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). Many Thanks for providing access to the TPUs ❤️