hoangton commited on
Commit
2be7a4f
1 Parent(s): abc529e

Upload configuration_mpt.py

Browse files
Files changed (1) hide show
  1. configuration_mpt.py +140 -0
configuration_mpt.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A HuggingFace-style model configuration."""
2
+ import warnings
3
+ from typing import Any, Dict, Optional, Union
4
+ from transformers import PretrainedConfig
5
+ attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
6
+ ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
7
+ init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
8
+
9
+ class MPTConfig(PretrainedConfig):
10
+ model_type = 'mpt'
11
+
12
+ def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', verbose: Optional[int]=None, **kwargs: Any):
13
+ """The MPT configuration class.
14
+
15
+ Args:
16
+ d_model (int): The size of the embedding dimension of the model.
17
+ n_heads (int): The number of attention heads.
18
+ n_layers (int): The number of layers in the model.
19
+ expansion_ratio (int): The ratio of the up/down scale in the ffn.
20
+ max_seq_len (int): The maximum sequence length of the model.
21
+ vocab_size (int): The size of the vocabulary.
22
+ resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
23
+ emb_pdrop (float): The dropout probability for the embedding layer.
24
+ learned_pos_emb (bool): Whether to use learned positional embeddings
25
+ attn_config (Dict): A dictionary used to configure the model's attention module:
26
+ attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
27
+ attn_pdrop (float): The dropout probability for the attention layers.
28
+ attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
29
+ qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
30
+ clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
31
+ this value.
32
+ softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
33
+ use the default scale of ``1/sqrt(d_keys)``.
34
+ prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
35
+ extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
36
+ can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
37
+ attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
38
+ When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
39
+ which sub-sequence each token belongs to.
40
+ Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
41
+ alibi (bool): Whether to use the alibi bias instead of position embeddings.
42
+ alibi_bias_max (int): The maximum value of the alibi bias.
43
+ kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
44
+ ffn_config (Dict): A dictionary used to configure the model's ffn module:
45
+ ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
46
+ init_device (str): The device to use for parameter initialization.
47
+ logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
48
+ no_bias (bool): Whether to use bias in all layers.
49
+ verbose (int): The verbosity level. 0 is silent.
50
+ embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
51
+ norm_type (str): choose type of norm to use
52
+ use_cache (bool): Whether or not the model should return the last key/values attentions
53
+ init_config (Dict): A dictionary used to configure the model initialization:
54
+ init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
55
+ 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
56
+ 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
57
+ init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
58
+ emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
59
+ emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
60
+ used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
61
+ init_std (float): The standard deviation of the normal distribution used to initialize the model,
62
+ if using the baseline_ parameter initialization scheme.
63
+ init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
64
+ fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
65
+ init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
66
+ ---
67
+ See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
68
+ fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
69
+ """
70
+ self.d_model = d_model
71
+ self.n_heads = n_heads
72
+ self.n_layers = n_layers
73
+ self.expansion_ratio = expansion_ratio
74
+ self.max_seq_len = max_seq_len
75
+ self.vocab_size = vocab_size
76
+ self.resid_pdrop = resid_pdrop
77
+ self.emb_pdrop = emb_pdrop
78
+ self.learned_pos_emb = learned_pos_emb
79
+ self.attn_config = attn_config
80
+ self.ffn_config = ffn_config
81
+ self.init_device = init_device
82
+ self.logit_scale = logit_scale
83
+ self.no_bias = no_bias
84
+ self.embedding_fraction = embedding_fraction
85
+ self.norm_type = norm_type
86
+ self.use_cache = use_cache
87
+ self.init_config = init_config
88
+ self.fc_type = fc_type
89
+ if verbose is not None:
90
+ warnings.warn(DeprecationWarning('verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'))
91
+ if 'name' in kwargs:
92
+ del kwargs['name']
93
+ if 'loss_fn' in kwargs:
94
+ del kwargs['loss_fn']
95
+ if self.attn_config.get('alibi', False):
96
+ self.learned_pos_emb = False
97
+ warnings.warn(f'alibi is turned on, setting `learned_pos_emb` to `False.`')
98
+ super().__init__(**kwargs)
99
+ self._validate_config()
100
+
101
+ def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
102
+ for (k, v) in config_defaults.items():
103
+ if k not in config:
104
+ config[k] = v
105
+ return config
106
+
107
+ def _validate_config(self) -> None:
108
+ self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
109
+ self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
110
+ self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
111
+ if self.d_model % self.n_heads != 0:
112
+ raise ValueError('d_model must be divisible by n_heads')
113
+ if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
114
+ raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
115
+ if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
116
+ raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
117
+ if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
118
+ raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
119
+ if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
120
+ raise NotImplementedError('alibi only implemented with torch and triton attention.')
121
+ if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
122
+ raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
123
+ if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
124
+ raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
125
+ if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
126
+ raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
127
+ if self.init_config.get('name', None) is None:
128
+ raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
129
+ if not self.learned_pos_emb and (not self.attn_config['alibi']):
130
+ warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi.')
131
+ if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
132
+ try:
133
+ import transformer_engine.pytorch as te
134
+ del te
135
+ except:
136
+ raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
137
+ if self.ffn_config['ffn_type'] == 'mptmlp':
138
+ self.ffn_config['fc_type'] = self.fc_type
139
+ elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
140
+ self.ffn_config['bias'] = not self.no_bias