holygrimm commited on
Commit
13b46c5
·
verified ·
1 Parent(s): 2a51577

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model:
5
+ - distilbert/distilbert-base-uncased
6
+ license: apache-2.0
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ library_name: adapter-transformers
13
+ tags:
14
+ - resume-classification
15
+ - multi-label-classification
16
+ - human-resources
17
+ - transformers
18
+ - distilbert
19
+ - career-guidance
20
+ - fine-tuned
21
+ ---
22
+ # **Res-BERT**
23
+ Fine-tuned DistilBERT model for multi-label resume classification.
24
+
25
+ ---
26
+
27
+ ## **Model Overview**
28
+ **Res-BERT** is a fine-tuned version of the DistilBERT base model, trained on a multi-labeled dataset of resumes (`resume_corpus`) with occupation labels. This model can classify resumes into multiple occupation categories, making it a useful tool for HR teams, recruitment platforms, and AI-powered career assistants.
29
+
30
+ ### **Base Model**
31
+ - **DistilBERT (uncased):** A smaller, faster, and cheaper version of BERT, pretrained on BookCorpus and English Wikipedia. It provides a balance of performance and efficiency for NLP tasks.
32
+
33
+ ---
34
+
35
+ ## **Dataset**
36
+ The **resume_corpus** dataset was used for training. It consists of resumes labeled with occupations. The dataset includes:
37
+ - **`resumes_corpus.zip`:** A collection of `.txt` files (resumes) with corresponding labels in `.lab` files.
38
+ - **`resumes_sample.zip`:** A consolidated text file, where each line contains:
39
+ - Resume ID
40
+ - Occupation labels (separated by `;`)
41
+ - Resume text.
42
+ - **`normalized_classes`:** Associations between raw and normalized occupation labels.
43
+
44
+ ### **Dataset Citation**
45
+ Jiechieu, K.F.F., Tsopze, N. *Skills prediction based on multi-label resume classification using CNN with model predictions explanation.* Neural Comput & Applic (2020). [DOI:10.1007/s00521-020-05302-x](https://doi.org/10.1007/s00521-020-05302-x).
46
+
47
+ ---
48
+
49
+
50
+ ## **Training Procedure**
51
+ The model was fine-tuned using:
52
+ - **Input Format:** Lowercased, tokenized text using WordPiece with a vocabulary of 30,000 tokens.
53
+ - **Hyperparameters:** Default settings of the Hugging Face `Trainer` API for DistilBERT-based sequence classification.
54
+ - **Preprocessing:**
55
+ - Masking: 15% of tokens were masked during pretraining.
56
+ - Split: 80% training, 10% validation, 10% test.
57
+ - **Hardware:** 8 16GB V100 GPUs, trained for 10 hours.
58
+
59
+ ---
60
+
61
+ ## **Intended Use**
62
+ ### **Applications**
63
+ - Resume screening for recruitment platforms.
64
+ - Career guidance and job-matching services.
65
+ - Analyzing skills and experiences from resumes.
66
+
67
+ ### **How to Use**
68
+ #### Using Transformers' pipeline:
69
+ ```python
70
+ from transformers import pipeline
71
+
72
+ classifier = pipeline("text-classification", model="Res-BERT", tokenizer="Res-BERT", multi_label=True)
73
+ resumes = ["Software developer with 5 years of experience in Java and Python."]
74
+ predictions = classifier(resumes)
75
+
76
+ print(predictions)
77
+ ```
78
+
79
+ #### Using Transformers' pipeline:
80
+ ```python
81
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained("Res-BERT")
84
+ model = AutoModelForSequenceClassification.from_pretrained("Res-BERT")
85
+
86
+ text = "Experienced mechanical engineer with expertise in CAD and manufacturing."
87
+ inputs = tokenizer(text, return_tensors="pt")
88
+ outputs = model(**inputs)
89
+
90
+ print(outputs.logits)
91
+
92
+ ```
93
+ ## Citations
94
+ @article{Sanh2019DistilBERTAD,
95
+ title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
96
+ author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
97
+ journal={ArXiv},
98
+ year={2019},
99
+ volume={abs/1910.01108}
100
+ }
101
+
102
+ @article{Jiechieu2020ResumeClassification,
103
+ title={Skills prediction based on multi-label resume classification using CNN with model predictions explanation},
104
+ author={K.F.F. Jiechieu and N. Tsopze},
105
+ journal={Neural Comput & Applic},
106
+ year={2020},
107
+ doi={10.1007/s00521-020-05302-x}
108
+ }