File size: 18,629 Bytes
7e9198b
 
93ca945
 
 
7e9198b
8c3360b
93ca945
 
 
8c3360b
93ca945
8c3360b
 
 
 
93ca945
8c3360b
 
 
 
93ca945
8c3360b
 
 
 
93ca945
8c3360b
 
 
 
93ca945
8c3360b
 
 
93ca945
8c3360b
 
 
93ca945
 
778cc7c
93ca945
 
7e9198b
93ca945
 
 
 
 
 
 
 
 
 
8c3360b
93ca945
 
8c3360b
93ca945
 
 
 
 
 
 
 
 
8c3360b
93ca945
 
8c3360b
93ca945
7e9198b
 
93ca945
7e9198b
8c3360b
 
7e9198b
93ca945
7e9198b
93ca945
 
 
 
 
 
8c3360b
93ca945
 
7e9198b
93ca945
7e9198b
93ca945
 
 
7e9198b
93ca945
7e9198b
93ca945
 
 
 
 
 
7e9198b
93ca945
7e9198b
93ca945
7e9198b
93ca945
7e9198b
93ca945
 
 
7e9198b
93ca945
 
 
7e9198b
93ca945
 
 
 
8c3360b
 
 
93ca945
 
 
 
7e9198b
93ca945
 
 
 
 
7e9198b
93ca945
 
7e9198b
93ca945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3360b
 
93ca945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3360b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ca945
 
8c3360b
93ca945
8c3360b
 
93ca945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3360b
 
 
 
 
 
93ca945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16729
- loss:CosineSimilarityLoss
base_model: hon9kon9ize/bert-large-cantonese-nli
widget:
- source_sentence: 啲狗喺雪入面玩緊。
  sentences:
  - 呢個係我成日覺得對一年級學生好有幫助嘅例子。
  - 兩隻狗喺沙灘到玩緊。
  - 喺Linux系統,我用Bibble,雖然有啲缺點,但係依家得呢個係比較專業嘅選擇。
- source_sentence: 個女人整緊蛋。
  sentences:
  - 一班老人家圍住張飯枱影相。
  - 有個男人向個女人唱歌。
  - 個女人係度食嘢。
- source_sentence: 一架電單車泊喺一幅畫滿城市景觀塗鴉嘅牆邊。
  sentences:
  - 夜晚,一架電單車泊喺一幅城市壁畫隔離。
  - 一隻黑白相間嘅狗喺藍色嘅水到游水。
  - 個細路仔頭髮豎晒起,係咁碌落藍色滑梯。
- source_sentence: 有個男人孭住隻狗同埋一艘獨木舟。
  sentences:
  - 隻狗孭住個男人喺獨木舟到。
  - 我見我對孖仔就係咁:細路仔學說話嗰陣,都會自己發明啲獨特嘅方言。
  - 「出汗就係出汗,你真係控制唔到。」
- source_sentence: 一個細路女同一個細路仔喺度睇書。
  sentences:
  - 個女人孭住個BB。
  - 有個男人彈緊結他。
  - 一個大啲嘅小朋友玩緊公仔,望住窗外。
datasets:
  - hon9kon9ize/yue-stsb
  - sentence-transformers/stsb
  - C-MTEB/STSB
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.7983233550249502
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7996394101125816
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.7637579307526682
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7604840209490058
      name: Spearman Cosine
---

# SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hon9kon9ize/bert-large-cantonese-nli](https://huggingface.co/hon9kon9ize/bert-large-cantonese-nli) on the [yue-stsb](https://huggingface.co/datasets/hon9kon9ize/yue-stsb), [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) and [C-MTEB/STSB](https://huggingface.co/datasets/C-MTEB/STSB) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.


## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [hon9kon9ize/bert-large-cantonese-nli](https://huggingface.co/hon9kon9ize/bert-large-cantonese-nli) <!-- at revision 140fca4e8ed46ca830b9ee0f9dec91c9c114bd5b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '一個細路女同一個細路仔喺度睇書。',
    '一個大啲嘅小朋友玩緊公仔,望住窗外。',
    '有個男人彈緊結他。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `sts-dev` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | sts-dev    | sts-test   |
|:--------------------|:-----------|:-----------|
| pearson_cosine      | 0.7983     | 0.7638     |
| **spearman_cosine** | **0.7996** | **0.7605** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### yue-stsb

* Dataset: [yue-stsb](https://huggingface.co/datasets/hon9kon9ize/yue-stsb) at [40cea5d](https://huggingface.co/datasets/hon9kon9ize/yue-stsb/tree/40cea5d8e9d1aeb1498816d90d1e417bafcc96a8)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 7 tokens</li><li>mean: 12.24 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                   | sentence2                           | score             |
  |:----------------------------|:------------------------------------|:------------------|
  | <code>架飛機正準備起飛。</code>      | <code>一架飛機正準備起飛。</code>             | <code>1.0</code>  |
  | <code>有個男人吹緊一支好大嘅笛。</code>  | <code>有個男人吹緊笛。</code>               | <code>0.76</code> |
  | <code>有個男人喺批薩上面灑碎芝士。</code> | <code>有個男人將磨碎嘅芝士灑落一塊未焗嘅批薩上面。</code> | <code>0.76</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

* Size: 16,729 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 20.29 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.36 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                       | sentence2                                                | score             |
  |:----------------------------------------------------------------|:---------------------------------------------------------|:------------------|
  | <code>奧巴馬登記咗參加奧巴馬醫保。 </code>                                    | <code>美國人爭住喺限期前登記參加奧巴馬醫保計劃,</code>                       | <code>0.24</code> |
  | <code>Search ends for missing asylum-seekers</code>             | <code>Search narrowed for missing man</code>             | <code>0.28</code> |
  | <code>檢察官喺五月突然轉軚,要求公開驗屍報告,因為有利於辯方嘅康納·彼得森驗屍報告部分內容已經洩露畀媒體。</code> | <code>佢哋要求公開驗屍報告,因為彼得森腹中胎兒嘅驗屍報告中,對辯方有利嘅部分已經洩露俾傳媒。</code> | <code>0.8</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 4,458 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 19.76 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.65 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                    | sentence2                    | score             |
  |:-----------------------------|:-----------------------------|:------------------|
  | <code>有個戴住安全帽嘅男人喺度跳舞。</code> | <code>有個戴住安全帽嘅男人喺度跳舞。</code> | <code>1.0</code>  |
  | <code>一個細路仔騎緊馬。</code>       | <code>個細路仔騎緊匹馬。</code>       | <code>0.95</code> |
  | <code>有個男人餵老鼠畀條蛇食。</code>    | <code>個男人餵咗隻老鼠畀條蛇食。</code>   | <code>1.0</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
| 0.7634 | 100  | 0.0549        | 0.0403          | 0.7895                  | -                        |
| 1.5267 | 200  | 0.027         | 0.0368          | 0.7941                  | -                        |
| 2.2901 | 300  | 0.0187        | 0.0349          | 0.7968                  | -                        |
| 3.0534 | 400  | 0.0119        | 0.0354          | 0.8004                  | -                        |
| 3.8168 | 500  | 0.0076        | 0.0359          | 0.7996                  | -                        |
| 4.0    | 524  | -             | -               | -                       | 0.7605                   |


### Framework Versions
- Python: 3.11.2
- Sentence Transformers: 3.3.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->