File size: 18,629 Bytes
7e9198b 93ca945 7e9198b 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 778cc7c 93ca945 7e9198b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 7e9198b 93ca945 7e9198b 8c3360b 7e9198b 93ca945 7e9198b 93ca945 8c3360b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 8c3360b 93ca945 7e9198b 93ca945 7e9198b 93ca945 7e9198b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 8c3360b 93ca945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16729
- loss:CosineSimilarityLoss
base_model: hon9kon9ize/bert-large-cantonese-nli
widget:
- source_sentence: 啲狗喺雪入面玩緊。
sentences:
- 呢個係我成日覺得對一年級學生好有幫助嘅例子。
- 兩隻狗喺沙灘到玩緊。
- 喺Linux系統,我用Bibble,雖然有啲缺點,但係依家得呢個係比較專業嘅選擇。
- source_sentence: 個女人整緊蛋。
sentences:
- 一班老人家圍住張飯枱影相。
- 有個男人向個女人唱歌。
- 個女人係度食嘢。
- source_sentence: 一架電單車泊喺一幅畫滿城市景觀塗鴉嘅牆邊。
sentences:
- 夜晚,一架電單車泊喺一幅城市壁畫隔離。
- 一隻黑白相間嘅狗喺藍色嘅水到游水。
- 個細路仔頭髮豎晒起,係咁碌落藍色滑梯。
- source_sentence: 有個男人孭住隻狗同埋一艘獨木舟。
sentences:
- 隻狗孭住個男人喺獨木舟到。
- 我見我對孖仔就係咁:細路仔學說話嗰陣,都會自己發明啲獨特嘅方言。
- 「出汗就係出汗,你真係控制唔到。」
- source_sentence: 一個細路女同一個細路仔喺度睇書。
sentences:
- 個女人孭住個BB。
- 有個男人彈緊結他。
- 一個大啲嘅小朋友玩緊公仔,望住窗外。
datasets:
- hon9kon9ize/yue-stsb
- sentence-transformers/stsb
- C-MTEB/STSB
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7983233550249502
name: Pearson Cosine
- type: spearman_cosine
value: 0.7996394101125816
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7637579307526682
name: Pearson Cosine
- type: spearman_cosine
value: 0.7604840209490058
name: Spearman Cosine
---
# SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hon9kon9ize/bert-large-cantonese-nli](https://huggingface.co/hon9kon9ize/bert-large-cantonese-nli) on the [yue-stsb](https://huggingface.co/datasets/hon9kon9ize/yue-stsb), [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) and [C-MTEB/STSB](https://huggingface.co/datasets/C-MTEB/STSB) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [hon9kon9ize/bert-large-cantonese-nli](https://huggingface.co/hon9kon9ize/bert-large-cantonese-nli) <!-- at revision 140fca4e8ed46ca830b9ee0f9dec91c9c114bd5b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'一個細路女同一個細路仔喺度睇書。',
'一個大啲嘅小朋友玩緊公仔,望住窗外。',
'有個男人彈緊結他。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.7983 | 0.7638 |
| **spearman_cosine** | **0.7996** | **0.7605** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### yue-stsb
* Dataset: [yue-stsb](https://huggingface.co/datasets/hon9kon9ize/yue-stsb) at [40cea5d](https://huggingface.co/datasets/hon9kon9ize/yue-stsb/tree/40cea5d8e9d1aeb1498816d90d1e417bafcc96a8)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 7 tokens</li><li>mean: 12.24 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.21 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:----------------------------|:------------------------------------|:------------------|
| <code>架飛機正準備起飛。</code> | <code>一架飛機正準備起飛。</code> | <code>1.0</code> |
| <code>有個男人吹緊一支好大嘅笛。</code> | <code>有個男人吹緊笛。</code> | <code>0.76</code> |
| <code>有個男人喺批薩上面灑碎芝士。</code> | <code>有個男人將磨碎嘅芝士灑落一塊未焗嘅批薩上面。</code> | <code>0.76</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
* Size: 16,729 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 20.29 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.36 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:----------------------------------------------------------------|:---------------------------------------------------------|:------------------|
| <code>奧巴馬登記咗參加奧巴馬醫保。 </code> | <code>美國人爭住喺限期前登記參加奧巴馬醫保計劃,</code> | <code>0.24</code> |
| <code>Search ends for missing asylum-seekers</code> | <code>Search narrowed for missing man</code> | <code>0.28</code> |
| <code>檢察官喺五月突然轉軚,要求公開驗屍報告,因為有利於辯方嘅康納·彼得森驗屍報告部分內容已經洩露畀媒體。</code> | <code>佢哋要求公開驗屍報告,因為彼得森腹中胎兒嘅驗屍報告中,對辯方有利嘅部分已經洩露俾傳媒。</code> | <code>0.8</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 4,458 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 8 tokens</li><li>mean: 19.76 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 19.65 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------|:-----------------------------|:------------------|
| <code>有個戴住安全帽嘅男人喺度跳舞。</code> | <code>有個戴住安全帽嘅男人喺度跳舞。</code> | <code>1.0</code> |
| <code>一個細路仔騎緊馬。</code> | <code>個細路仔騎緊匹馬。</code> | <code>0.95</code> |
| <code>有個男人餵老鼠畀條蛇食。</code> | <code>個男人餵咗隻老鼠畀條蛇食。</code> | <code>1.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `bf16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
| 0.7634 | 100 | 0.0549 | 0.0403 | 0.7895 | - |
| 1.5267 | 200 | 0.027 | 0.0368 | 0.7941 | - |
| 2.2901 | 300 | 0.0187 | 0.0349 | 0.7968 | - |
| 3.0534 | 400 | 0.0119 | 0.0354 | 0.8004 | - |
| 3.8168 | 500 | 0.0076 | 0.0359 | 0.7996 | - |
| 4.0 | 524 | - | - | - | 0.7605 |
### Framework Versions
- Python: 3.11.2
- Sentence Transformers: 3.3.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |