---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16729
- loss:CosineSimilarityLoss
base_model: hon9kon9ize/bert-large-cantonese-nli
widget:
- source_sentence: 啲狗喺雪入面玩緊。
sentences:
- 呢個係我成日覺得對一年級學生好有幫助嘅例子。
- 兩隻狗喺沙灘到玩緊。
- 喺Linux系統,我用Bibble,雖然有啲缺點,但係依家得呢個係比較專業嘅選擇。
- source_sentence: 個女人整緊蛋。
sentences:
- 一班老人家圍住張飯枱影相。
- 有個男人向個女人唱歌。
- 個女人係度食嘢。
- source_sentence: 一架電單車泊喺一幅畫滿城市景觀塗鴉嘅牆邊。
sentences:
- 夜晚,一架電單車泊喺一幅城市壁畫隔離。
- 一隻黑白相間嘅狗喺藍色嘅水到游水。
- 個細路仔頭髮豎晒起,係咁碌落藍色滑梯。
- source_sentence: 有個男人孭住隻狗同埋一艘獨木舟。
sentences:
- 隻狗孭住個男人喺獨木舟到。
- 我見我對孖仔就係咁:細路仔學說話嗰陣,都會自己發明啲獨特嘅方言。
- 「出汗就係出汗,你真係控制唔到。」
- source_sentence: 一個細路女同一個細路仔喺度睇書。
sentences:
- 個女人孭住個BB。
- 有個男人彈緊結他。
- 一個大啲嘅小朋友玩緊公仔,望住窗外。
datasets:
- hon9kon9ize/yue-stsb
- sentence-transformers/stsb
- C-MTEB/STSB
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7983233550249502
name: Pearson Cosine
- type: spearman_cosine
value: 0.7996394101125816
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7637579307526682
name: Pearson Cosine
- type: spearman_cosine
value: 0.7604840209490058
name: Spearman Cosine
---
# SentenceTransformer based on hon9kon9ize/bert-large-cantonese-nli
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hon9kon9ize/bert-large-cantonese-nli](https://huggingface.co/hon9kon9ize/bert-large-cantonese-nli) on the [yue-stsb](https://huggingface.co/datasets/hon9kon9ize/yue-stsb), [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) and [C-MTEB/STSB](https://huggingface.co/datasets/C-MTEB/STSB) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [hon9kon9ize/bert-large-cantonese-nli](https://huggingface.co/hon9kon9ize/bert-large-cantonese-nli)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'一個細路女同一個細路仔喺度睇書。',
'一個大啲嘅小朋友玩緊公仔,望住窗外。',
'有個男人彈緊結他。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-dev` and `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-dev | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.7983 | 0.7638 |
| **spearman_cosine** | **0.7996** | **0.7605** |
## Training Details
### Training Dataset
#### yue-stsb
* Dataset: [yue-stsb](https://huggingface.co/datasets/hon9kon9ize/yue-stsb) at [40cea5d](https://huggingface.co/datasets/hon9kon9ize/yue-stsb/tree/40cea5d8e9d1aeb1498816d90d1e417bafcc96a8)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
架飛機正準備起飛。
| 一架飛機正準備起飛。
| 1.0
|
| 有個男人吹緊一支好大嘅笛。
| 有個男人吹緊笛。
| 0.76
|
| 有個男人喺批薩上面灑碎芝士。
| 有個男人將磨碎嘅芝士灑落一塊未焗嘅批薩上面。
| 0.76
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
* Size: 16,729 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | 奧巴馬登記咗參加奧巴馬醫保。
| 美國人爭住喺限期前登記參加奧巴馬醫保計劃,
| 0.24
|
| Search ends for missing asylum-seekers
| Search narrowed for missing man
| 0.28
|
| 檢察官喺五月突然轉軚,要求公開驗屍報告,因為有利於辯方嘅康納·彼得森驗屍報告部分內容已經洩露畀媒體。
| 佢哋要求公開驗屍報告,因為彼得森腹中胎兒嘅驗屍報告中,對辯方有利嘅部分已經洩露俾傳媒。
| 0.8
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 4,458 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | 有個戴住安全帽嘅男人喺度跳舞。
| 有個戴住安全帽嘅男人喺度跳舞。
| 1.0
|
| 一個細路仔騎緊馬。
| 個細路仔騎緊匹馬。
| 0.95
|
| 有個男人餵老鼠畀條蛇食。
| 個男人餵咗隻老鼠畀條蛇食。
| 1.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `bf16`: True
#### All Hyperparameters