File size: 6,179 Bytes
e1d7dc5
 
 
 
 
 
 
 
 
 
7fed6f8
 
b94afb5
 
 
 
fea72f8
 
7fed6f8
e1d7dc5
 
 
 
2279d50
e1d7dc5
e96535c
e1d7dc5
 
 
 
 
 
d5c03ab
a0c74e3
95cebc9
3868642
 
 
e1d7dc5
 
 
7184cc0
 
 
 
e36c886
e1d7dc5
9f5634d
 
 
 
 
4dfb479
210a301
4dfb479
210a301
 
14af5bf
4dfb479
9f5634d
 
 
 
 
 
 
 
 
 
4bc5809
97860ec
7b54e83
 
4bc5809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea72f8
 
 
 
 
4bc5809
2f00ec1
 
 
 
 
 
 
 
 
 
 
 
a661eb4
2f00ec1
 
 
4bc5809
 
e1d7dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: apache-2.0
base_model: sentence-transformers/all-MiniLM-L6-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: new_classifier_model
  results: []
language: en
widget:
 - text: "In the case of (ioii) and (1 lii), the passive transformation will apply to the embedded sentence, and in all four cases other operations will give the final surface forms of (8) and (g)."
 - text: "(10) (i) Noun Phrase — Verb — Noun Phrase — Sentence (/ — persuaded — a specialist — a specialist will examine John) (ii) Noun Phrase — Verb — Noun Phrase — Sentence (/ — persuaded — John — a specialist will examine John)"
 - text: "184 SOME RESIDUAL PROBLEMS"
 - text: "Peshkovskii, A. M. (1956). Russkii Sintaksis v Nauchnom Osveshchenii. Moscow."
 - text: "S -» NP^Aux^VP"
 - text: "(sincerity, [+N, —Count, +Abstract]) (boy, [+N, —Count, +Common, +Animate, +Human]) (may, [+M])"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Classifier for Academic Text Contents

This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on a collection of Linguistics publications.
It achieves the following results on the evaluation set:
- Loss: 0.4181
- Accuracy: 0.9193

## Model description

The model is fine-tuned with academic publications in Linguistics, to classify texts in publications into 4 classes as a filter to other tasks.
Sentence-based data obtained from OCR-processed PDF files was annotated manually with the following classes:
- 0: out of scope - materials that are of low significance, eg. page number and page header, noise from OCR/pdf-to-text convertion
- 1: main text - texts that are the main texts of the publication, to be used for down-stream tasks
- 2: examples - texts that are captions of the figures, or quotes or excerpts
- 3: references - references of the publication, excluding in-text citations

## Intended uses & limitations

Intended uses:
- to extract main text in academic texts for down-stream tasks

Limitations:
- training and evaluation data is limited to English, and academic texts in Linguistics (though still to a higher extent usable for German texts)

## How to run

```python
from transformers import pipeline

# return output for the best label
# eg. [{'label': 'EXAMPLE', 'score': 0.9601941108703613}]
classifier = pipeline("text-classification", model="howanching-clara/classifier_for_academic_texts", tokenizer="howanching-clara/classifier_for_academic_texts")

# return output for all labels
# eg. [[{'label': 'OUT OF SCOPE', 'score': 0.007808608002960682}, {'label': 'MAIN TEXT', 'score': 0.028077520430088043}, {'label': 'EXAMPLE', 'score': 0.9601941108703613}, {'label': 'REFERENCE', 'score': 0.003919811453670263}]]
# classifier = pipeline("text-classification", model="howanching-clara/classifier_for_academic_texts", tokenizer="howanching-clara/classifier_for_academic_texts", return_all_scores=True)

# Perform inference on your input text
your_text = "your text here."
result = classifier(your_text)

print(result)
```



## Try it yourself with the following examples (not in training/ evaluation data)

Excerpts from Chomsky, N. (2014). Aspects of the Theory of Syntax (No. 11). MIT press.
retrieved from https://apps.dtic.mil/sti/pdfs/AD0616323.pdf

- In the case of (ioii) and (1 lii), the passive transformation will
apply to the embedded sentence, and in all four cases other
operations will give the final surface forms of (8) and (g).


- (10) (i) Noun Phrase — Verb — Noun Phrase — Sentence
(/ — persuaded — a specialist — a specialist will examine
John)
(ii) Noun Phrase — Verb — Noun Phrase — Sentence
(/ — persuaded — John — a specialist will examine John)


- (13) S
Det
Predicate-Phrase
[+Definite] nom VP
their
F1...Fm Det N
destroy [+Definite] G, ... G,
the property

- 184 SOME RESIDUAL PROBLEMS

- Peshkovskii, A. M. (1956). Russkii Sintaksis v Nauchnom Osveshchenii.
Moscow.

- S -» NP^Aux^VP

- (sincerity, [+N, —Count, +Abstract])
(boy, [+N, —Count, +Common, +Animate, +Human])
(may, [+M])

## Problematic cases

Definitions or findings written in point form are challenging for the model. For example:

- (2) (i) the string (1) is a Sentence (S); frighten the boy is a Verb
Phrase (VP) consisting of the Verb (V) frighten and the
Noun Phrase (NP) the boy; sincerity is also an NP; the
NP the boy consists of the Determiner (Det) the, followed
by a Noun (N); the NP sincerity consists of just an N;
the is, furthermore, an Article (Art); may is a Verbal
Auxiliary (Aux) and, furthermore, a Modal (M).

- (v) specification of a function m such that m(i) is an integer
associated with the grammar G4 as its value (with, let us
say, lower value indicated by higher number)



## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5772        | 1.0   | 762  | 0.3256          | 0.9062   |
| 0.2692        | 2.0   | 1524 | 0.3038          | 0.9163   |
| 0.217         | 3.0   | 2286 | 0.3109          | 0.9180   |
| 0.1773        | 4.0   | 3048 | 0.3160          | 0.9209   |
| 0.1619        | 5.0   | 3810 | 0.3440          | 0.9206   |
| 0.1329        | 6.0   | 4572 | 0.3675          | 0.9160   |
| 0.1165        | 7.0   | 5334 | 0.3770          | 0.9209   |
| 0.0943        | 8.0   | 6096 | 0.4012          | 0.9203   |
| 0.085         | 9.0   | 6858 | 0.4166          | 0.9196   |
| 0.0811        | 10.0  | 7620 | 0.4181          | 0.9193   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cpu
- Datasets 2.14.7
- Tokenizers 0.14.1