|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
|
|
|
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
|
|
|
|
def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool): |
|
if use_kernel: |
|
try: |
|
from apex.normalization import FusedLayerNorm |
|
|
|
return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps) |
|
except ImportError: |
|
raise RuntimeError("FusedLayerNorm not available. Please install apex.") |
|
else: |
|
return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine) |
|
|
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if not isinstance(grid_size, tuple): |
|
grid_size = (grid_size, grid_size) |
|
|
|
grid_h = np.arange(grid_size[0], dtype=np.float32) / scale |
|
grid_w = np.arange(grid_size[1], dtype=np.float32) / scale |
|
if base_size is not None: |
|
grid_h *= base_size / grid_size[0] |
|
grid_w *= base_size / grid_size[1] |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token and extra_tokens > 0: |
|
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0): |
|
pos = np.arange(0, length)[..., None] / scale |
|
return get_1d_sincos_pos_embed_from_grid(embed_dim, pos) |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float64) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|