File size: 3,592 Bytes
3b91fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: turcoins-classifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: hsyntemiz--turcoins
split: test
args: hsyntemiz--turcoins
metrics:
- name: Accuracy
type: accuracy
value: 0.9548611111111112
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# turcoins-classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1763
- Accuracy: 0.9549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9277 | 1.0 | 146 | 1.9660 | 0.7726 |
| 1.6627 | 2.0 | 292 | 1.7154 | 0.7917 |
| 1.4071 | 2.99 | 438 | 1.4120 | 0.8079 |
| 1.09 | 4.0 | 585 | 1.1225 | 0.8362 |
| 0.8086 | 5.0 | 731 | 0.8917 | 0.8675 |
| 0.7636 | 6.0 | 877 | 0.7596 | 0.8709 |
| 0.611 | 6.99 | 1023 | 0.6493 | 0.8883 |
| 0.4605 | 8.0 | 1170 | 0.5899 | 0.8872 |
| 0.37 | 9.0 | 1316 | 0.4978 | 0.9045 |
| 0.3882 | 10.0 | 1462 | 0.4424 | 0.9132 |
| 0.3139 | 10.99 | 1608 | 0.3969 | 0.9115 |
| 0.3178 | 12.0 | 1755 | 0.3525 | 0.9294 |
| 0.2796 | 13.0 | 1901 | 0.3552 | 0.9161 |
| 0.2571 | 14.0 | 2047 | 0.3189 | 0.9265 |
| 0.2481 | 14.99 | 2193 | 0.2945 | 0.9358 |
| 0.1875 | 16.0 | 2340 | 0.2647 | 0.9392 |
| 0.1861 | 17.0 | 2486 | 0.2404 | 0.9410 |
| 0.1839 | 18.0 | 2632 | 0.2556 | 0.9421 |
| 0.173 | 18.99 | 2778 | 0.2387 | 0.9462 |
| 0.1837 | 20.0 | 2925 | 0.2049 | 0.9485 |
| 0.1724 | 21.0 | 3071 | 0.2065 | 0.9525 |
| 0.1399 | 22.0 | 3217 | 0.2089 | 0.9404 |
| 0.1696 | 22.99 | 3363 | 0.1957 | 0.9497 |
| 0.1405 | 24.0 | 3510 | 0.1848 | 0.9554 |
| 0.1009 | 25.0 | 3656 | 0.1912 | 0.9520 |
| 0.1126 | 26.0 | 3802 | 0.1717 | 0.9560 |
| 0.1336 | 26.99 | 3948 | 0.1699 | 0.9589 |
| 0.1046 | 28.0 | 4095 | 0.1600 | 0.9601 |
| 0.126 | 29.0 | 4241 | 0.1839 | 0.9520 |
| 0.0882 | 29.95 | 4380 | 0.1763 | 0.9549 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|