--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: turcoins-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: hsyntemiz--turcoins split: test args: hsyntemiz--turcoins metrics: - name: Accuracy type: accuracy value: 0.9548611111111112 --- # turcoins-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1763 - Accuracy: 0.9549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9277 | 1.0 | 146 | 1.9660 | 0.7726 | | 1.6627 | 2.0 | 292 | 1.7154 | 0.7917 | | 1.4071 | 2.99 | 438 | 1.4120 | 0.8079 | | 1.09 | 4.0 | 585 | 1.1225 | 0.8362 | | 0.8086 | 5.0 | 731 | 0.8917 | 0.8675 | | 0.7636 | 6.0 | 877 | 0.7596 | 0.8709 | | 0.611 | 6.99 | 1023 | 0.6493 | 0.8883 | | 0.4605 | 8.0 | 1170 | 0.5899 | 0.8872 | | 0.37 | 9.0 | 1316 | 0.4978 | 0.9045 | | 0.3882 | 10.0 | 1462 | 0.4424 | 0.9132 | | 0.3139 | 10.99 | 1608 | 0.3969 | 0.9115 | | 0.3178 | 12.0 | 1755 | 0.3525 | 0.9294 | | 0.2796 | 13.0 | 1901 | 0.3552 | 0.9161 | | 0.2571 | 14.0 | 2047 | 0.3189 | 0.9265 | | 0.2481 | 14.99 | 2193 | 0.2945 | 0.9358 | | 0.1875 | 16.0 | 2340 | 0.2647 | 0.9392 | | 0.1861 | 17.0 | 2486 | 0.2404 | 0.9410 | | 0.1839 | 18.0 | 2632 | 0.2556 | 0.9421 | | 0.173 | 18.99 | 2778 | 0.2387 | 0.9462 | | 0.1837 | 20.0 | 2925 | 0.2049 | 0.9485 | | 0.1724 | 21.0 | 3071 | 0.2065 | 0.9525 | | 0.1399 | 22.0 | 3217 | 0.2089 | 0.9404 | | 0.1696 | 22.99 | 3363 | 0.1957 | 0.9497 | | 0.1405 | 24.0 | 3510 | 0.1848 | 0.9554 | | 0.1009 | 25.0 | 3656 | 0.1912 | 0.9520 | | 0.1126 | 26.0 | 3802 | 0.1717 | 0.9560 | | 0.1336 | 26.99 | 3948 | 0.1699 | 0.9589 | | 0.1046 | 28.0 | 4095 | 0.1600 | 0.9601 | | 0.126 | 29.0 | 4241 | 0.1839 | 0.9520 | | 0.0882 | 29.95 | 4380 | 0.1763 | 0.9549 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3