--- license: apache-2.0 datasets: - huihui-ai/FineQwQ-142k base_model: - huihui-ai/MicroThinker-3B-Preview tags: - llama3.2 - abliterated - uncensored library_name: transformers pipeline_tag: text-generation language: - en --- # MicroThinker-3B-Preview-v2 MicroThinker-3B-Preview-v2, a new model fine-tuned from the [huihui-ai/MicroThinker-3B-Preview](https://huggingface.co/huihui-ai/MicroThinker-3B-Preview) model, focused on advancing AI reasoning capabilities. This model is superior to the [huihui-ai/MicroThinker-3B-Preview](https://huggingface.co/huihui-ai/MicroThinker-3B-Preview) model. ## Training Details This is just a test, but the performance is quite good. Now, I'll introduce the test environment. The model was trained using 1 RTX 4090 GPU(24GB) . The fine-tuning process used 142k from the FineQwQ-142k dataset, max_length(tokens) 21710, quant_bits 4. The [SFT (Supervised Fine-Tuning)](https://github.com/modelscope/ms-swift) process is divided into several steps, and no code needs to be written. 1. Create the environment. ``` conda create -yn ms-swift python=3.11 conda activate ms-swift git clone https://github.com/modelscope/ms-swift.git cd ms-swift pip install -e . cd .. ``` 2. Download the model and dataset. ``` huggingface-cli download huihui-ai/MicroThinker-3B-Preview --local-dir ./huihui-ai/MicroThinker-3B-Preview huggingface-cli download --repo-type dataset huihui-ai/FineQwQ-142k --local-dir ./data/FineQwQ-142k ``` 3. Used only the huihui-ai/FineQwQ-142k, Trained for 1 epoch: ``` swift sft --model huihui-ai/MicroThinker-3B-Preview --model_type llama3_2 --train_type lora --dataset "data/FineQwQ-142k/FineQwQ-142k.jsonl" --num_train_epochs 1 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --max_length 21710 --quant_bits 4 --bnb_4bit_compute_dtype bfloat16 --bnb_4bit_quant_storage bfloat16 --lora_rank 8 --lora_alpha 32 --gradient_checkpointing true --weight_decay 0.1 --learning_rate 1e-4 --gradient_accumulation_steps 16 --eval_steps 500 --save_steps 500 --logging_steps 100 --system "You are a helpful assistant. You should think step-by-step." --output_dir output/MicroThinker-3B-Preview/lora/sft2 --model_author "huihui-ai" --model_name "MicroThinker-3B-Preview" ``` 4. Save the final fine-tuned model. After you're done, input `exit` to exit. Replace the directories below with specific ones. ``` swift infer --model huihui-ai/MicroThinker-3B-Preview --model_type llama3_2 --adapters output/MicroThinker-3B-Preview/lora/sft2/v2-20250110-180322\checkpoint-8786 --stream true --infer_backend pt --max_new_tokens 2048 --merge_lora true ``` This should create a new model directory: `checkpoint-8786-merged`, Rename the directory to `MicroThinker-3B-Preview-v2`, Copy or move this directory to the `huihui` directory. 5. Perform inference on the final fine-tuned model. ``` swift infer --model huihui/MicroThinker-3B-Preview-v2 --stream true --infer_backend pt --max_new_tokens 8192 ``` 6. Test examples. ``` How many 'r' characters are there in the word "strawberry"? ```