File size: 5,813 Bytes
2a2ae9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import random

import torch
import torch.utils.data as data
import torchvision.transforms as T
from PIL import Image


class LowLightFDataset(data.Dataset):
    def __init__(self, root, image_split='images_aug', targets_split='targets', training=True):
        self.root = root
        self.num_instances = 8
        self.img_root = os.path.join(root, image_split)
        self.target_root = os.path.join(root, targets_split)
        self.training = training
        print('----', image_split, targets_split, '----')
        self.imgs = list(sorted(os.listdir(self.img_root)))
        self.gts = list(sorted(os.listdir(self.target_root)))

        names = [img_name.split('_')[0] + '.' + img_name.split('.')[-1] for img_name in self.imgs]
        self.imgs = list(
            filter(lambda img_name: img_name.split('_')[0] + '.' + img_name.split('.')[-1] in self.gts, self.imgs))

        self.gts = list(filter(lambda gt: gt in names, self.gts))

        print(len(self.imgs), len(self.gts))
        self.preproc = T.Compose(
            [T.ToTensor()]
        )
        self.preproc_gt = T.Compose(
            [T.ToTensor()]
        )

    def __getitem__(self, idx):
        fn, ext = self.gts[idx].split('.')
        imgs = []
        for i in range(self.num_instances):
            img_path = os.path.join(self.img_root, f"{fn}_{i}.{ext}")
            imgs += [self.preproc(Image.open(img_path).convert("RGB"))]

        if self.training:
            random.shuffle(imgs)
        gt_path = os.path.join(self.target_root, self.gts[idx])
        gt = Image.open(gt_path).convert("RGB")
        gt = self.preproc_gt(gt)

        # print(img_path, gt_path)
        return torch.stack(imgs, dim=0), gt, fn

    def __len__(self):
        return len(self.gts)


class LowLightFDatasetEval(data.Dataset):
    def __init__(self, root, targets_split='targets', training=True):
        self.root = root
        self.num_instances = 1
        self.img_root = os.path.join(root, 'images')
        self.target_root = os.path.join(root, targets_split)
        self.training = training

        self.imgs = list(sorted(os.listdir(self.img_root)))
        self.gts = list(sorted(os.listdir(self.target_root)))

        self.imgs = list(filter(lambda img_name: img_name in self.gts, self.imgs))
        self.gts = list(filter(lambda gt: gt in self.imgs, self.gts))

        print(len(self.imgs), len(self.gts))
        self.preproc = T.Compose(
            [T.ToTensor()]
        )
        self.preproc_gt = T.Compose(
            [T.ToTensor()]
        )

    def __getitem__(self, idx):
        fn, ext = self.gts[idx].split('.')
        imgs = []
        for i in range(self.num_instances):
            img_path = os.path.join(self.img_root, f"{fn}.{ext}")
            imgs += [self.preproc(Image.open(img_path).convert("RGB"))]

        gt_path = os.path.join(self.target_root, self.gts[idx])
        gt = Image.open(gt_path).convert("RGB")
        gt = self.preproc_gt(gt)

        # print(img_path, gt_path)
        return torch.stack(imgs, dim=0), gt, fn

    def __len__(self):
        return len(self.gts)


class LowLightDataset(data.Dataset):
    def __init__(self, root, targets_split='targets', color_tuning=False):
        self.root = root
        self.img_root = os.path.join(root, 'images')
        self.target_root = os.path.join(root, targets_split)
        self.color_tuning = color_tuning
        self.imgs = list(sorted(os.listdir(self.img_root)))
        self.gts = list(sorted(os.listdir(self.target_root)))

        self.imgs = list(filter(lambda img_name: img_name in self.gts, self.imgs))
        self.gts = list(filter(lambda gt: gt in self.imgs, self.gts))

        print(len(self.imgs), len(self.gts))
        self.preproc = T.Compose(
            [T.ToTensor()]
        )
        self.preproc_gt = T.Compose(
            [T.ToTensor()]
        )

    def __getitem__(self, idx):
        fn, ext = self.gts[idx].split('.')

        img_path = os.path.join(self.img_root, self.imgs[idx])
        img = Image.open(img_path).convert("RGB")
        img = self.preproc(img)

        gt_path = os.path.join(self.target_root, self.gts[idx])
        gt = Image.open(gt_path).convert("RGB")
        gt = self.preproc_gt(gt)

        if self.color_tuning:
            return img, gt, 'a' + self.imgs[idx], 'a' + self.imgs[idx]
        else:
            return img, gt, fn

    def __len__(self):
        return len(self.imgs)


class LowLightDatasetReverse(data.Dataset):
    def __init__(self, root, targets_split='targets', color_tuning=False):
        self.root = root
        self.img_root = os.path.join(root, 'images')
        self.target_root = os.path.join(root, targets_split)
        self.color_tuning = color_tuning
        self.imgs = list(sorted(os.listdir(self.img_root)))
        self.gts = list(sorted(os.listdir(self.target_root)))

        self.imgs = list(filter(lambda img_name: img_name in self.gts, self.imgs))
        self.gts = list(filter(lambda gt: gt in self.imgs, self.gts))

        print(len(self.imgs), len(self.gts))
        self.preproc = T.Compose(
            [T.ToTensor()]
        )
        self.preproc_gt = T.Compose(
            [T.ToTensor()]
        )

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_root, self.imgs[idx])
        img = Image.open(img_path).convert("RGB")
        img = self.preproc(img)

        gt_path = os.path.join(self.target_root, self.gts[idx])
        gt = Image.open(gt_path).convert("RGB")
        gt = self.preproc_gt(gt)

        if self.color_tuning:
            return gt, img, 'a' + self.imgs[idx], 'a' + self.imgs[idx]
        else:
            fn, ext = os.path.splitext(self.imgs[idx])
            return gt, img, '%03d' % int(fn) + ext

    def __len__(self):
        return len(self.imgs)