File size: 9,623 Bytes
e538b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import argparse
import os
import kornia
import torch
import torch.nn.functional as F
import tqdm
from torch import nn
from torch.utils.data import DataLoader
import models
from datasets import LowLightDataset
from tools import saver, mutils
from models import PSNR, SSIM
import numpy as np
def get_args():
parser = argparse.ArgumentParser('Breaking Downing the Darkness')
parser.add_argument('--num_gpus', type=int, default=1, help='number of gpus being used')
parser.add_argument('--num_workers', type=int, default=12, help='num_workers of dataloader')
parser.add_argument('--batch_size', type=int, default=4, help='The number of images per batch among all devices')
parser.add_argument('-m1', '--model1', type=str, default='IANet', help='Model1 Name')
parser.add_argument('-m2', '--model2', type=str, default='NSNet', help='Model2 Name')
parser.add_argument('-m3', '--model3', type=str, default='FuseNet', help='Model3 Name')
parser.add_argument('-m4', '--model4', type=str, default=None, help='Model4 Name')
parser.add_argument('-m1w', '--model1_weight', type=str, default=None, help='Model weight of IAN')
parser.add_argument('-m2w', '--model2_weight', type=str, default=None, help='Model weight of ANSN')
parser.add_argument('-m3w', '--model3_weight', type=str, default=None, help='Model weight of CAN')
parser.add_argument('-m4w', '--model4_weight', type=str, default=None, help='Model weight of NFM')
parser.add_argument('--mef', action='store_true', help='using color adation based MEF data or not')
parser.add_argument('--gc', action='store_true', help='using gamma correction or not')
parser.add_argument('--save_extra', action='store_true', help='save intermediate outputs or not')
parser.add_argument('--comment', type=str, default='default',
help='Project comment')
parser.add_argument('--alpha', '-a', type=float, default=0.10)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--optim', type=str, default='adamw', help='select optimizer for training, '
'suggest using \'admaw\' until the'
' very final stage then switch to \'sgd\'')
parser.add_argument('--data_path', type=str, default='./data/LOL/eval',
help='the root folder of dataset')
parser.add_argument('--log_path', type=str, default='logs/')
parser.add_argument('--saved_path', type=str, default='logs/')
args = parser.parse_args()
return args
class ModelBreadNet(nn.Module):
def __init__(self, model1, model2, model3, model4):
super().__init__()
self.eps = 1e-6
self.model_ianet = model1(in_channels=1, out_channels=1)
self.model_nsnet = model2(in_channels=2, out_channels=1)
self.model_canet = model3(in_channels=4, out_channels=2) if opt.mef else model3(in_channels=6, out_channels=2)
self.model_fdnet = model4(in_channels=3, out_channels=1) if opt.model4 else None
self.load_weight(self.model_ianet, opt.model1_weight)
self.load_weight(self.model_nsnet, opt.model2_weight)
self.load_weight(self.model_canet, opt.model3_weight)
self.load_weight(self.model_fdnet, opt.model4_weight)
def load_weight(self, model, weight_pth):
if model is not None:
state_dict = torch.load(weight_pth)
ret = model.load_state_dict(state_dict, strict=True)
print(ret)
def noise_syn_exp(self, illumi, strength):
return torch.exp(-illumi) * strength
def forward(self, image, image_gt):
# Color space mapping
texture_in, cb_in, cr_in = torch.split(kornia.color.rgb_to_ycbcr(image), 1, dim=1)
texture_gt, _, _ = torch.split(kornia.color.rgb_to_ycbcr(image_gt), 1, dim=1)
# Illumination prediction
texture_in_down = F.interpolate(texture_in, scale_factor=0.5, mode='bicubic', align_corners=True)
texture_illumi = self.model_ianet(texture_in_down)
texture_illumi = F.interpolate(texture_illumi, scale_factor=2, mode='bicubic', align_corners=True)
# Illumination adjustment
texture_illumi = torch.clamp(texture_illumi, 0., 1.)
texture_ia = texture_in / torch.clamp_min(texture_illumi, self.eps)
texture_ia = torch.clamp(texture_ia, 0., 1.)
# Noise suppression and fusion
texture_nss = []
for strength in [0., 0.05, 0.1]:
attention = self.noise_syn_exp(texture_illumi, strength=strength)
texture_res = self.model_nsnet(torch.cat([texture_ia, attention], dim=1))
texture_ns = texture_ia + texture_res
texture_nss.append(texture_ns)
texture_nss = torch.cat(texture_nss, dim=1).detach()
texture_fd = self.model_fdnet(texture_nss)
# Gamma correction to align the brightness with ground truth;
# other methods involved in our main paper are also conducted the same correction for evaluation.
if opt.gc:
max_psnr = 0
best = None
for ga in np.arange(0.1, 2.0, 0.01):
tx_en = texture_fd ** ga
psnr = PSNR(tx_en, texture_gt)
if psnr > max_psnr:
max_psnr = psnr
best = tx_en
texture_fd = torch.clamp(best, 0, 1)
# Color adaption
if not opt.mef:
image_ia_ycbcr = kornia.color.rgb_to_ycbcr(torch.clamp(image / (texture_illumi + self.eps), 0, 1))
_, cb_ia, cr_ia = torch.split(image_ia_ycbcr, 1, dim=1)
colors = self.model_canet(torch.cat([texture_in, cb_in, cr_in, texture_fd, cb_ia, cr_ia], dim=1))
else:
colors = self.model_canet(
torch.cat([texture_in, cb_in, cr_in, texture_fd], dim=1))
cb_out, cr_out = torch.split(colors, 1, dim=1)
cb_out = torch.clamp(cb_out, 0, 1)
cr_out = torch.clamp(cr_out, 0, 1)
# Color space mapping
image_out = kornia.color.ycbcr_to_rgb(
torch.cat([texture_fd, cb_out, cr_out], dim=1))
image_out = torch.clamp(image_out, 0, 1)
# Calculating image quality metrics
psnr = PSNR(image_out, image_gt)
ssim = SSIM(image_out, image_gt).item()
return texture_ia, texture_nss, texture_fd, image_out, texture_illumi, texture_res, psnr, ssim
def evaluation(opt):
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
timestamp = mutils.get_formatted_time()
opt.saved_path = opt.saved_path + f'/{opt.comment}/{timestamp}'
os.makedirs(opt.saved_path, exist_ok=True)
val_params = {'batch_size': 1,
'shuffle': False,
'drop_last': False,
'num_workers': opt.num_workers}
val_set = LowLightDataset(opt.data_path)
val_generator = DataLoader(val_set, **val_params)
val_generator = tqdm.tqdm(val_generator)
model1 = getattr(models, opt.model1)
model2 = getattr(models, opt.model2)
model3 = getattr(models, opt.model3)
model4 = getattr(models, opt.model4) if opt.model4 else None
model = ModelBreadNet(model1, model2, model3, model4)
print(model)
if opt.num_gpus > 0:
model = model.cuda()
if opt.num_gpus > 1:
model = nn.DataParallel(model)
model.eval()
psnrs, ssims, fns = [], [], []
for iter, (data, target, name) in enumerate(val_generator):
saver.base_url = os.path.join(opt.saved_path, 'results')
with torch.no_grad():
if opt.num_gpus == 1:
data = data.cuda()
target = target.cuda()
texture_in, _, _ = torch.split(kornia.color.rgb_to_ycbcr(data), 1, dim=1)
texture_gt, _, _ = torch.split(kornia.color.rgb_to_ycbcr(target), 1, dim=1)
texture_ia, texture_nss, texture_fd, image_out, \
texture_illumi, texture_res, psnr, ssim = model(data, target)
if opt.save_extra:
saver.save_image(data, name=os.path.splitext(name[0])[0] + '_im_in')
saver.save_image(target, name=os.path.splitext(name[0])[0] + '_im_gt')
saver.save_image(texture_in, name=os.path.splitext(name[0])[0] + '_y_in')
saver.save_image(texture_gt, name=os.path.splitext(name[0])[0] + '_y_gt')
saver.save_image(texture_ia, name=os.path.splitext(name[0])[0] + '_ia')
for i in range(texture_nss.shape[1]):
saver.save_image(texture_nss[:, i, ...], name=os.path.splitext(name[0])[0] + f'_ns_{i}')
saver.save_image(texture_fd, name=os.path.splitext(name[0])[0] + '_fd')
saver.save_image(texture_illumi, name=os.path.splitext(name[0])[0] + '_illumi')
saver.save_image(texture_res, name=os.path.splitext(name[0])[0] + '_res')
saver.save_image(image_out, name=os.path.splitext(name[0])[0] + '_out')
else:
saver.save_image(image_out, name=os.path.splitext(name[0])[0] + '_Bread')
psnrs.append(psnr)
ssims.append(ssim)
fns.append(name[0])
results = list(zip(psnrs, ssims, fns))
results.sort(key=lambda item: item[0])
for r in results:
print(*r)
psnr = np.mean(np.array(psnrs))
ssim = np.mean(np.array(ssims))
print('psnr: ', psnr, ', ssim: ', ssim)
if __name__ == '__main__':
opt = get_args()
evaluation(opt)
|