huqiming513 commited on
Commit
03b684c
1 Parent(s): e538b68

Upload 7 files

Browse files
models/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .networks import *
2
+
models/losses.py ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from pytorch_msssim import SSIM, MS_SSIM
4
+ from torch.nn import L1Loss, MSELoss
5
+ from torchvision.models import vgg16
6
+ import torch.nn.functional as F
7
+
8
+
9
+ def compute_gradient(img):
10
+ gradx = img[..., 1:, :] - img[..., :-1, :]
11
+ grady = img[..., 1:] - img[..., :-1]
12
+ return gradx, grady
13
+
14
+
15
+ class GradientLoss(nn.Module):
16
+ def __init__(self):
17
+ super(GradientLoss, self).__init__()
18
+ self.loss = nn.L1Loss()
19
+
20
+ def forward(self, predict, target):
21
+ predict_gradx, predict_grady = compute_gradient(predict)
22
+ target_gradx, target_grady = compute_gradient(target)
23
+
24
+ return self.loss(predict_gradx, target_gradx) + self.loss(predict_grady, target_grady)
25
+
26
+
27
+ class SSIMLoss(nn.Module):
28
+ def __init__(self, channels):
29
+ super(SSIMLoss, self).__init__()
30
+ self.ssim = SSIM(data_range=1., size_average=True, channel=channels)
31
+
32
+ def forward(self, output, target):
33
+ ssim_loss = 1 - self.ssim(output, target)
34
+ return ssim_loss
35
+
36
+
37
+ class SSIML1Loss(nn.Module):
38
+ def __init__(self, channels):
39
+ super(SSIML1Loss, self).__init__()
40
+ self.l1_loss_func = nn.L1Loss()
41
+ self.ssim = SSIM(data_range=1., size_average=True, channel=channels)
42
+ self.alpha = 1.4
43
+
44
+ def forward(self, output, target):
45
+ l1_loss = self.l1_loss_func(output, target)
46
+ ssim_loss = 1 - self.ssim(output, target)
47
+ total_loss = l1_loss + self.alpha * ssim_loss
48
+ return total_loss
49
+
50
+
51
+ class GradSSIML1Loss(nn.Module):
52
+ def __init__(self, channels):
53
+ super(GradSSIML1Loss, self).__init__()
54
+ self.l1_loss_func = nn.L1Loss()
55
+ self.ssim = SSIM(data_range=1., size_average=True, channel=channels)
56
+ self.grad_loss_func = GradientLoss()
57
+ self.alpha = 1.4
58
+
59
+ def forward(self, output, target):
60
+ l1_loss = self.l1_loss_func(output, target)
61
+ ssim_loss = 1 - self.ssim(output, target)
62
+ grad_loss = self.grad_loss_func(output, target)
63
+ total_loss = l1_loss + self.alpha * ssim_loss + 0.2 * grad_loss
64
+ return total_loss
65
+
66
+
67
+ class SSIML2Loss(nn.Module):
68
+ def __init__(self, channels):
69
+ super(SSIML2Loss, self).__init__()
70
+ self.l2_loss_func = nn.MSELoss()
71
+ self.ssim = SSIM(data_range=1., size_average=True, channel=channels)
72
+ self.alpha = 1.
73
+
74
+ def forward(self, output, target):
75
+ l2_loss = self.l2_loss_func(output, target)
76
+ ssim_loss = 1 - self.ssim(output, target)
77
+ total_loss = l2_loss + self.alpha * ssim_loss
78
+ return total_loss
79
+
80
+
81
+ class MSSSIML1Loss(nn.Module):
82
+ def __init__(self, channels):
83
+ super(MSSSIML1Loss, self).__init__()
84
+ self.l1_loss_func = nn.L1Loss()
85
+ self.ms_ssim = MS_SSIM(data_range=1., size_average=True, channel=channels)
86
+ self.alpha = 1.0
87
+
88
+ def forward(self, output, target):
89
+ ms_ssim_loss = 1 - self.ms_ssim(output, target)
90
+ l1_loss = self.l1_loss_func(output, target)
91
+ total_loss = l1_loss + self.alpha * ms_ssim_loss
92
+ return total_loss
93
+
94
+
95
+ class MSSSIML2Loss(nn.Module):
96
+ def __init__(self, channels):
97
+ super(MSSSIML2Loss, self).__init__()
98
+ self.l2_loss_func = nn.MSELoss()
99
+ self.ms_ssim = MS_SSIM(data_range=1., size_average=True, channel=channels)
100
+ # self.alpha = 0.84
101
+ self.alpha = 1.2
102
+
103
+ def forward(self, output, target):
104
+ l2_loss = self.l2_loss_func(output, target)
105
+ ms_ssim_loss = 1 - self.ms_ssim(output, target)
106
+ total_loss = l2_loss + self.alpha * ms_ssim_loss
107
+ return total_loss
108
+
109
+
110
+ class PerLoss(torch.nn.Module):
111
+ def __init__(self):
112
+ super(PerLoss, self).__init__()
113
+ vgg_model = vgg16(pretrained=True).features[:16]
114
+ vgg_model = vgg_model.to('cuda')
115
+ for param in vgg_model.parameters():
116
+ param.requires_grad = False
117
+
118
+ self.vgg_layers = vgg_model
119
+
120
+ self.layer_name_mapping = {
121
+ '3': "relu1_2",
122
+ '8': "relu2_2",
123
+ '15': "relu3_3"
124
+ }
125
+
126
+ def output_features(self, x):
127
+ output = {}
128
+ for name, module in self.vgg_layers._modules.items():
129
+ x = module(x)
130
+ if name in self.layer_name_mapping:
131
+ output[self.layer_name_mapping[name]] = x
132
+ return list(output.values())
133
+
134
+ def forward(self, data, gt):
135
+ loss = []
136
+ if data.shape[1] == 1:
137
+ data = data.repeat(1, 3, 1, 1)
138
+ gt = gt.repeat(1, 3, 1, 1)
139
+
140
+ dehaze_features = self.output_features(data)
141
+ gt_features = self.output_features(gt)
142
+ for dehaze_feature, gt_feature in zip(dehaze_features, gt_features):
143
+ loss.append(F.mse_loss(dehaze_feature, gt_feature))
144
+
145
+ return sum(loss) / len(loss)
146
+
147
+
148
+ class PerL1Loss(torch.nn.Module):
149
+ def __init__(self):
150
+ super(PerL1Loss, self).__init__()
151
+ self.l1_loss_func = nn.L1Loss()
152
+ self.per_loss_func = PerLoss().to('cuda')
153
+
154
+ def forward(self, output, target):
155
+ l1_loss = self.l1_loss_func(output, target)
156
+ per_loss = self.per_loss_func(output, target)
157
+ # total_loss = l1_loss + 0.04 * per_loss
158
+ total_loss = l1_loss + 0.2 * per_loss
159
+ return total_loss
160
+
161
+
162
+ class MSPerL1Loss(torch.nn.Module):
163
+ def __init__(self, channels):
164
+ super(MSPerL1Loss, self).__init__()
165
+ self.l1_loss_func = nn.L1Loss()
166
+ self.ms_ssim = MS_SSIM(data_range=1., size_average=True, channel=channels)
167
+ self.per_loss_func = PerLoss().to('cuda')
168
+
169
+ def forward(self, output, target):
170
+ ms_ssim_loss = 1 - self.ms_ssim(output, target)
171
+ l1_loss = self.l1_loss_func(output, target)
172
+ per_loss = self.per_loss_func(output, target)
173
+ total_loss = l1_loss + 1.2 * ms_ssim_loss + 0.04 * per_loss
174
+ return total_loss
175
+
176
+
177
+ class MSPerL2Loss(torch.nn.Module):
178
+ def __init__(self):
179
+ super(MSPerL2Loss, self).__init__()
180
+ self.l2_loss_func = nn.MSELoss()
181
+ self.ms_ssim = MS_SSIM(data_range=1., size_average=True, channel=3)
182
+ self.per_loss_func = PerLoss().to('cuda')
183
+
184
+ def forward(self, output, target):
185
+ ms_ssim_loss = 1 - self.ms_ssim(output, target)
186
+ l2_loss = self.l2_loss_func(output, target)
187
+ per_loss = self.per_loss_func(output, target)
188
+ total_loss = l2_loss + 0.16 * ms_ssim_loss + 0.2 * per_loss
189
+ return total_loss
190
+
191
+
192
+ class TVLoss(torch.nn.Module):
193
+ def __init__(self):
194
+ super(TVLoss, self).__init__()
195
+
196
+ def forward(self, data):
197
+ w_variance = torch.sum(torch.pow(data[:, :, :, :-1] - data[:, :, :, 1:], 2))
198
+ h_variance = torch.sum(torch.pow(data[:, :, :-1, :] - data[:, :, 1:, :], 2))
199
+
200
+ count_h = self._tensor_size(data[:, :, 1:, :])
201
+ count_w = self._tensor_size(data[:, :, :, 1:])
202
+
203
+ tv_loss = h_variance / count_h + w_variance / count_w
204
+ return tv_loss
205
+
206
+ def _tensor_size(self, t):
207
+ return t.size()[1] * t.size()[2] * t.size()[3]
208
+
209
+
210
+ def safe_div(a, b, eps=1e-2):
211
+ return a / torch.clamp_min(b, eps)
212
+
213
+
214
+ class WTVLoss(torch.nn.Module):
215
+ def __init__(self):
216
+ super(WTVLoss, self).__init__()
217
+ self.eps = 1e-2
218
+
219
+ def forward(self, data, aux):
220
+ data_dw = data[:, :, :, :-1] - data[:, :, :, 1:]
221
+ data_dh = data[:, :, :-1, :] - data[:, :, 1:, :]
222
+ aux_dw = torch.abs(aux[:, :, :, :-1] - aux[:, :, :, 1:])
223
+ aux_dh = torch.abs(aux[:, :, :-1, :] - aux[:, :, 1:, :])
224
+
225
+ w_variance = torch.sum(torch.pow(safe_div(data_dw, aux_dw, self.eps), 2))
226
+ h_variance = torch.sum(torch.pow(safe_div(data_dh, aux_dh, self.eps), 2))
227
+
228
+ count_h = self._tensor_size(data[:, :, 1:, :])
229
+ count_w = self._tensor_size(data[:, :, :, 1:])
230
+
231
+ tv_loss = h_variance / count_h + w_variance / count_w
232
+ return tv_loss
233
+
234
+ def _tensor_size(self, t):
235
+ return t.size()[1] * t.size()[2] * t.size()[3]
236
+
237
+
238
+ class WTVLoss2(torch.nn.Module):
239
+ def __init__(self):
240
+ super(WTVLoss2, self).__init__()
241
+ self.eps = 1e-2
242
+ self.criterion = nn.MSELoss()
243
+
244
+ def forward(self, data, aux):
245
+ N, C, H, W = data.shape
246
+
247
+ data_dw = F.pad(torch.abs(data[:, :, :, :-1] - data[:, :, :, 1:]), (1, 0, 0, 0))
248
+ data_dh = F.pad(torch.abs(data[:, :, :-1, :] - data[:, :, 1:, :]), (0, 0, 1, 0))
249
+ aux_dw = F.pad(torch.abs(aux[:, :, :, :-1] - aux[:, :, :, 1:]), (1, 0, 0, 0))
250
+ aux_dh = F.pad(torch.abs(aux[:, :, :-1, :] - aux[:, :, 1:, :]), (0, 0, 1, 0))
251
+
252
+ data_d = data_dw + data_dh
253
+ aux_d = aux_dw + aux_dh
254
+
255
+ loss1 = self.criterion(data_d, aux_d)
256
+ # loss2 = torch.norm(data_d / (aux_d + self.eps), p=1) / (C * H * W)
257
+ loss2 = torch.norm(data_d / (aux_d + self.eps)) / (C * H * W)
258
+ return loss1 * 0.5 + loss2 * 4.0
259
+
260
+
261
+ class MSTVPerL1Loss(torch.nn.Module):
262
+ def __init__(self):
263
+ super(MSTVPerL1Loss, self).__init__()
264
+ self.l1_loss_func = nn.L1Loss()
265
+ self.ms_ssim = MS_SSIM(data_range=1., size_average=True, channel=3)
266
+ self.per_loss_func = PerLoss().to('cuda')
267
+ self.tv_loss_func = TVLoss()
268
+
269
+ def forward(self, output, target):
270
+ ms_ssim_loss = 1 - self.ms_ssim(output, target)
271
+ l1_loss = self.l1_loss_func(output, target)
272
+ per_loss = self.per_loss_func(output, target)
273
+ tv_loss = self.tv_loss_func(output)
274
+ total_loss = l1_loss + 1.2 * ms_ssim_loss + 0.04 * per_loss + 1e-7 * tv_loss
275
+ return total_loss
276
+
277
+
278
+ if __name__ == "__main__":
279
+ MSTVPerL1Loss()
models/lr_scheduler.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.optim.lr_scheduler import _LRScheduler
3
+ import math
4
+
5
+
6
+ class CosineLR(_LRScheduler):
7
+ def __init__(self, optimizer, init_lr, total_epochs, last_epoch=-1):
8
+ super(CosineLR, self).__init__(optimizer, last_epoch=-1)
9
+ self.optimizer = optimizer
10
+ self.init_lr = init_lr
11
+ self.total_epochs = total_epochs
12
+ self.last_epoch = last_epoch
13
+ print(f'CosineLR start from epoch(step) {last_epoch} with init_lr {init_lr} ')
14
+
15
+ def get_lr(self):
16
+ if self.last_epoch == 0:
17
+ return [group['lr'] for group in self.optimizer.param_groups]
18
+
19
+ return [0.5 * (1 + math.cos(self.last_epoch * math.pi / self.total_epochs)) * self.init_lr for group in
20
+ self.optimizer.param_groups]
models/metrics.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from math import exp
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch.autograd import Variable
8
+
9
+
10
+ def gaussian(window_size, sigma):
11
+ gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
12
+ return gauss / gauss.sum()
13
+
14
+
15
+ def create_window(window_size, channel):
16
+ _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
17
+ _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
18
+ window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
19
+ return window
20
+
21
+
22
+ def _ssim(img1, img2, window, window_size, channel, size_average=True):
23
+ mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
24
+ mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
25
+ mu1_sq = mu1.pow(2)
26
+ mu2_sq = mu2.pow(2)
27
+ mu1_mu2 = mu1 * mu2
28
+ sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
29
+ sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
30
+ sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
31
+ C1 = 0.01 ** 2
32
+ C2 = 0.03 ** 2
33
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
34
+
35
+ if size_average:
36
+ return ssim_map.mean()
37
+ else:
38
+ return ssim_map.mean(1).mean(1).mean(1)
39
+
40
+
41
+ def SSIM(img1, img2, window_size=11, size_average=True):
42
+ img1 = torch.clamp(img1, min=0, max=1)
43
+ img2 = torch.clamp(img2, min=0, max=1)
44
+ (_, channel, _, _) = img1.size()
45
+ window = create_window(window_size, channel)
46
+ if img1.is_cuda:
47
+ window = window.cuda(img1.get_device())
48
+ window = window.type_as(img1)
49
+ return _ssim(img1, img2, window, window_size, channel, size_average)
50
+
51
+
52
+ def PSNR(pred, gt):
53
+ pred = pred.clamp(0, 1).detach().cpu().numpy()
54
+ gt = gt.clamp(0, 1).detach().cpu().numpy()
55
+ imdff = pred - gt
56
+ rmse = math.sqrt(np.mean(imdff ** 2))
57
+ if rmse == 0:
58
+ return 100
59
+ return 20 * math.log10(1.0 / rmse)
60
+
61
+
62
+ if __name__ == "__main__":
63
+ pass
models/networks/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .networks import *
models/networks/modules.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class PALayer(nn.Module):
7
+ def __init__(self, channel):
8
+ super(PALayer, self).__init__()
9
+ self.pa = nn.Sequential(
10
+ nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),
11
+ nn.ReLU(inplace=True),
12
+ nn.Conv2d(channel // 8, 1, 1, padding=0, bias=True),
13
+ nn.Sigmoid()
14
+ )
15
+
16
+ def forward(self, x):
17
+ y = self.pa(x)
18
+ return x * y
19
+
20
+
21
+ class CALayer(nn.Module):
22
+ def __init__(self, channel):
23
+ super(CALayer, self).__init__()
24
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
25
+ self.ca = nn.Sequential(
26
+ nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),
27
+ nn.ReLU(inplace=True),
28
+ nn.Conv2d(channel // 8, channel, 1, padding=0, bias=True),
29
+ nn.Sigmoid()
30
+ )
31
+
32
+ def forward(self, x):
33
+ y = self.avg_pool(x)
34
+ y = self.ca(y)
35
+
36
+ return x * y
37
+
38
+
39
+ class DoubleConv(nn.Module):
40
+ def __init__(self, in_channels, out_channels, norm=False, leaky=True):
41
+ super().__init__()
42
+ self.conv = nn.Sequential(
43
+ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
44
+ nn.BatchNorm2d(out_channels) if norm else nn.Identity(),
45
+ nn.LeakyReLU(0.2, inplace=True) if leaky else nn.ReLU(inplace=True),
46
+ nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
47
+ nn.BatchNorm2d(out_channels) if norm else nn.Identity(),
48
+ nn.LeakyReLU(0.2, inplace=True) if leaky else nn.ReLU(inplace=True)
49
+ )
50
+
51
+ def forward(self, x):
52
+ return self.conv(x)
53
+
54
+
55
+ class OutConv(nn.Module):
56
+ def __init__(self, in_channels, out_channels, act=True):
57
+ super(OutConv, self).__init__()
58
+ self.conv = nn.Sequential(
59
+ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
60
+ nn.Sigmoid() if act else nn.Identity()
61
+ )
62
+
63
+ def forward(self, x):
64
+ return self.conv(x)
65
+
66
+
67
+ class Down(nn.Module):
68
+ """Downscaling with maxpool then double conv"""
69
+
70
+ def __init__(self, in_channels, out_channels, norm=True, leaky=True):
71
+ super().__init__()
72
+ self.maxpool_conv = nn.Sequential(
73
+ nn.MaxPool2d(2),
74
+ DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky)
75
+ )
76
+
77
+ def forward(self, x):
78
+ return self.maxpool_conv(x)
79
+
80
+
81
+ class Up(nn.Module):
82
+ """Upscaling then double conv"""
83
+
84
+ def __init__(self, in_channels, out_channels, bilinear=True, norm=True, leaky=True):
85
+ super().__init__()
86
+
87
+ # if bilinear, use the normal convolutions to reduce the number of channels
88
+ if bilinear:
89
+ self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
90
+ self.conv = DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky)
91
+ else:
92
+ self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
93
+ self.conv = DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky)
94
+
95
+ def forward(self, x1, x2):
96
+ x1 = self.up(x1)
97
+ # input is CHW
98
+ diffY = x2.size()[2] - x1.size()[2]
99
+ diffX = x2.size()[3] - x1.size()[3]
100
+
101
+ x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
102
+ diffY // 2, diffY - diffY // 2])
103
+
104
+ x = torch.cat([x2, x1], dim=1)
105
+ return self.conv(x)
106
+
107
+
108
+ class AttentiveDown(nn.Module):
109
+ def __init__(self, in_channels, out_channels, norm=False, leaky=True):
110
+ super().__init__()
111
+ self.down = Down(in_channels, out_channels, norm=norm, leaky=leaky)
112
+ self.attention = nn.Sequential(
113
+ CALayer(out_channels),
114
+ PALayer(out_channels)
115
+ )
116
+
117
+ def forward(self, x):
118
+ return self.attention(self.down(x))
119
+
120
+
121
+ class AttentiveUp(nn.Module):
122
+ def __init__(self, in_channels, out_channels, bilinear=True, norm=False, leaky=True):
123
+ super().__init__()
124
+ self.up = Up(in_channels, out_channels, bilinear, norm=norm, leaky=leaky)
125
+ self.attention = nn.Sequential(
126
+ CALayer(out_channels),
127
+ PALayer(out_channels)
128
+ )
129
+
130
+ def forward(self, x1, x2):
131
+ return self.attention(self.up(x1, x2))
132
+
133
+
134
+ class AttentiveDoubleConv(nn.Module):
135
+ def __init__(self, in_channels, out_channels, norm=False, leaky=False):
136
+ super().__init__()
137
+ self.conv = DoubleConv(in_channels, out_channels, norm=norm, leaky=leaky)
138
+ self.attention = nn.Sequential(
139
+ CALayer(out_channels),
140
+ PALayer(out_channels)
141
+ )
142
+
143
+ def forward(self, x):
144
+ return self.attention(self.conv(x))
models/networks/networks.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from models.networks.modules import *
2
+
3
+
4
+ class BaseNet(nn.Module):
5
+ def __init__(self, in_channels=1, out_channels=1, norm=True):
6
+ super(BaseNet, self).__init__()
7
+ self.n_channels = in_channels
8
+ self.n_classes = out_channels
9
+
10
+ self.inc = DoubleConv(in_channels, 32, norm=norm)
11
+ self.down1 = Down(32, 64, norm=norm)
12
+ self.down2 = Down(64, 128, norm=norm)
13
+ self.down3 = Down(128, 128, norm=norm)
14
+
15
+ self.up1 = Up(256, 64, bilinear=True, norm=norm)
16
+ self.up2 = Up(128, 32, bilinear=True, norm=norm)
17
+ self.up3 = Up(64, 32, bilinear=True, norm=norm)
18
+ self.outc = OutConv(32, out_channels)
19
+
20
+ def forward(self, x):
21
+ x1 = self.inc(x)
22
+ x2 = self.down1(x1)
23
+ x3 = self.down2(x2)
24
+ x4 = self.down3(x3)
25
+ x = self.up1(x4, x3)
26
+ x = self.up2(x, x2)
27
+ x = self.up3(x, x1)
28
+ logits = self.outc(x)
29
+ return logits
30
+
31
+
32
+ class IAN(BaseNet):
33
+ def __init__(self, in_channels=1, out_channels=1, norm=True):
34
+ super(IAN, self).__init__(in_channels, out_channels, norm)
35
+
36
+
37
+ class ANSN(BaseNet):
38
+ def __init__(self, in_channels=1, out_channels=1, norm=True):
39
+ super(ANSN, self).__init__(in_channels, out_channels, norm)
40
+ self.outc = OutConv(32, out_channels, act=False)
41
+
42
+
43
+ class FuseNet(nn.Module):
44
+ def __init__(self, in_channels=1, out_channels=1, norm=False):
45
+ super(FuseNet, self).__init__()
46
+ self.inc = AttentiveDoubleConv(in_channels, 32, norm=norm, leaky=False)
47
+ self.down1 = AttentiveDown(32, 64, norm=norm, leaky=False)
48
+ self.down2 = AttentiveDown(64, 64, norm=norm, leaky=False)
49
+ self.up1 = AttentiveUp(128, 32, bilinear=True, norm=norm, leaky=False)
50
+ self.up2 = AttentiveUp(64, 32, bilinear=True, norm=norm, leaky=False)
51
+ self.outc = OutConv(32, out_channels)
52
+
53
+ def forward(self, x):
54
+ x1 = self.inc(x)
55
+ x2 = self.down1(x1)
56
+ x3 = self.down2(x2)
57
+ x = self.up1(x3, x2)
58
+ x = self.up2(x, x1)
59
+ logits = self.outc(x)
60
+ return logits
61
+
62
+
63
+ if __name__ == '__main__':
64
+ for key in FuseNet(4, 2).state_dict().keys():
65
+ print(key)