---
base_model: huudan123/model_stage1
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:183796
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: nếu thời_gian đến mà họ phải có một cuộc đấu_tranh johny shanon
có_thể là một người ngạc_nhiên
sentences:
- johny nghĩ anh ta là người giỏi nhất trong thị_trấn
- nếu một cuộc đấu_tranh đã xảy ra johny có_thể ngạc_nhiên đấy
- tất_cả bằng_chứng về văn_hóa từ xã_hội của umbria đã bị mất
- source_sentence: chèn jay leno đùa ở đây
sentences:
- mathews đã chỉ ra rằng sẽ không cần phải tuyển_dụng luật_sư địa_phương
- đây là nơi mà một trò_đùa jay leno sẽ đi
- jay leno không phải là một diễn_viên hài
- source_sentence: đúng_vậy tất_cả là lỗi của họ
sentences:
- bạn bị giới_hạn bởi số_lượng bộ_nhớ bạn đã có
- phải tất_cả đều là lỗi của họ
- rõ_ràng là tất_cả những lỗi của công_nhân
- source_sentence: 6 mặc_dù mỗi cơ_quan phát_triển và triển_khai các thỏa_thuận hiệu_quả
phản_ánh các ưu_tiên tổ_chức cụ_thể cấu_trúc và nền văn_hóa các thỏa_thuận hiệu_quả
đã gặp các đặc_điểm sau
sentences:
- các thỏa_thuận hiệu_quả đã được phát_hành từ mỗi đại_lý
- kế_hoạch hiệu_quả loại_trừ bất_cứ điều gì để làm với các cấu_trúc
- không có gì bên trong sảnh trên đồi cả
- source_sentence: hay na uy hay gì đó
sentences:
- na uy hay cái gì đó khác
- điều đó hoàn_toàn không đúng
- na uy hoặc từ một trong những quốc_gia scandinavia
model-index:
- name: SentenceTransformer based on huudan123/model_stage1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts evaluator
type: sts-evaluator
metrics:
- type: pearson_cosine
value: 0.6279986884327646
name: Pearson Cosine
- type: spearman_cosine
value: 0.6257861952118347
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6286844662908612
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6309663003206769
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6277475064516767
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6297451268540156
name: Spearman Euclidean
- type: pearson_dot
value: 0.588316765453479
name: Pearson Dot
- type: spearman_dot
value: 0.5802157556789215
name: Spearman Dot
- type: pearson_max
value: 0.6286844662908612
name: Pearson Max
- type: spearman_max
value: 0.6309663003206769
name: Spearman Max
---
# SentenceTransformer based on huudan123/model_stage1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage1](https://huggingface.co/huudan123/model_stage1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [huudan123/model_stage1](https://huggingface.co/huudan123/model_stage1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/model_stage2")
# Run inference
sentences = [
'hay na uy hay gì đó',
'na uy hoặc từ một trong những quốc_gia scandinavia',
'na uy hay cái gì đó khác',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-evaluator`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:----------|
| pearson_cosine | 0.628 |
| spearman_cosine | 0.6258 |
| pearson_manhattan | 0.6287 |
| spearman_manhattan | 0.631 |
| pearson_euclidean | 0.6277 |
| spearman_euclidean | 0.6297 |
| pearson_dot | 0.5883 |
| spearman_dot | 0.5802 |
| pearson_max | 0.6287 |
| **spearman_max** | **0.631** |
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 15
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `gradient_checkpointing`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
|:-------:|:--------:|:-------------:|:----------:|:--------------------------:|
| 0 | 0 | - | - | 0.6283 |
| 0.6964 | 500 | 4.3237 | - | - |
| 1.0 | 718 | - | 2.3703 | 0.6500 |
| 1.3928 | 1000 | 2.2259 | - | - |
| **2.0** | **1436** | **-** | **2.2597** | **0.624** |
| 2.0891 | 1500 | 2.0143 | - | - |
| 2.7855 | 2000 | 1.7433 | - | - |
| 3.0 | 2154 | - | 2.3027 | 0.6405 |
| 3.4819 | 2500 | 1.5279 | - | - |
| 4.0 | 2872 | - | 2.3583 | 0.6094 |
| 4.1783 | 3000 | 1.3796 | - | - |
| 4.8747 | 3500 | 1.2096 | - | - |
| 5.0 | 3590 | - | 2.4877 | 0.6069 |
| 5.5710 | 4000 | 1.036 | - | - |
| 6.0 | 4308 | - | 2.5685 | 0.6310 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```