--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: whisper_small_tw12 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: tw split: train+test args: tw metrics: - name: Wer type: wer value: 1.103734439834025 --- # whisper_small_tw12 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 3.3399 - Wer: 1.1037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.25e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0649 | 6.25 | 100 | 3.2733 | 1.5726 | | 0.9932 | 12.5 | 200 | 2.9873 | 1.9378 | | 0.0521 | 18.75 | 300 | 3.0893 | 1.1203 | | 0.0045 | 25.0 | 400 | 3.2862 | 1.1245 | | 0.0025 | 31.25 | 500 | 3.3399 | 1.1037 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0