# A model for predicting the gender of author of news article ## Usage: ``` import re from transformers import pipeline from html import unescape from unicodedata import normalize re_multispace = re.compile(r"\s+") def normalize_text(text): if text == None: return None text = text.strip() text = text.replace("\n", " ") text = text.replace("\t", " ") text = text.replace("\r", " ") text = re_multispace.sub(" ", text) text = unescape(text) text = normalize("NFKC", text) return text model = pipeline(task="text-classification", model=f"hynky/Gender", tokenizer="ufal/robeczech-base", truncation=True, max_length=512, top_k=5 ) def predict(article): article = normalize_text(article) predictions = model(article) predict("Dnes v noci bude pršet.") ```