imvladikon
commited on
Commit
·
e09d36a
1
Parent(s):
cf018d5
End of training
Browse files- .gitattributes +1 -0
- README.md +387 -0
- config.json +130 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +72 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ace
|
4 |
+
- af
|
5 |
+
- als
|
6 |
+
- am
|
7 |
+
- an
|
8 |
+
- ang
|
9 |
+
- ar
|
10 |
+
- arc
|
11 |
+
- arz
|
12 |
+
- as
|
13 |
+
- ast
|
14 |
+
- ay
|
15 |
+
- az
|
16 |
+
- ba
|
17 |
+
- bar
|
18 |
+
- be
|
19 |
+
- bg
|
20 |
+
- bh
|
21 |
+
- bn
|
22 |
+
- bo
|
23 |
+
- br
|
24 |
+
- bs
|
25 |
+
- ca
|
26 |
+
- cbk
|
27 |
+
- cdo
|
28 |
+
- ce
|
29 |
+
- ceb
|
30 |
+
- ckb
|
31 |
+
- co
|
32 |
+
- crh
|
33 |
+
- cs
|
34 |
+
- csb
|
35 |
+
- cv
|
36 |
+
- cy
|
37 |
+
- da
|
38 |
+
- de
|
39 |
+
- diq
|
40 |
+
- dv
|
41 |
+
- el
|
42 |
+
- eml
|
43 |
+
- en
|
44 |
+
- eo
|
45 |
+
- es
|
46 |
+
- et
|
47 |
+
- eu
|
48 |
+
- ext
|
49 |
+
- fa
|
50 |
+
- fi
|
51 |
+
- fo
|
52 |
+
- fr
|
53 |
+
- frr
|
54 |
+
- fur
|
55 |
+
- fy
|
56 |
+
- ga
|
57 |
+
- gan
|
58 |
+
- gd
|
59 |
+
- gl
|
60 |
+
- gn
|
61 |
+
- gu
|
62 |
+
- hak
|
63 |
+
- he
|
64 |
+
- hi
|
65 |
+
- hr
|
66 |
+
- hsb
|
67 |
+
- hu
|
68 |
+
- hy
|
69 |
+
- ia
|
70 |
+
- id
|
71 |
+
- ig
|
72 |
+
- ilo
|
73 |
+
- io
|
74 |
+
- is
|
75 |
+
- it
|
76 |
+
- ja
|
77 |
+
- jbo
|
78 |
+
- jv
|
79 |
+
- ka
|
80 |
+
- kk
|
81 |
+
- km
|
82 |
+
- kn
|
83 |
+
- ko
|
84 |
+
- ksh
|
85 |
+
- ku
|
86 |
+
- ky
|
87 |
+
- la
|
88 |
+
- lb
|
89 |
+
- li
|
90 |
+
- lij
|
91 |
+
- lmo
|
92 |
+
- ln
|
93 |
+
- lt
|
94 |
+
- lv
|
95 |
+
- lzh
|
96 |
+
- mg
|
97 |
+
- mhr
|
98 |
+
- mi
|
99 |
+
- min
|
100 |
+
- mk
|
101 |
+
- ml
|
102 |
+
- mn
|
103 |
+
- mr
|
104 |
+
- ms
|
105 |
+
- mt
|
106 |
+
- mwl
|
107 |
+
- my
|
108 |
+
- mzn
|
109 |
+
- nan
|
110 |
+
- nap
|
111 |
+
- nds
|
112 |
+
- ne
|
113 |
+
- nl
|
114 |
+
- nn
|
115 |
+
- 'no'
|
116 |
+
- nov
|
117 |
+
- oc
|
118 |
+
- or
|
119 |
+
- os
|
120 |
+
- pa
|
121 |
+
- pdc
|
122 |
+
- pl
|
123 |
+
- pms
|
124 |
+
- pnb
|
125 |
+
- ps
|
126 |
+
- pt
|
127 |
+
- qu
|
128 |
+
- rm
|
129 |
+
- ro
|
130 |
+
- ru
|
131 |
+
- rw
|
132 |
+
- sa
|
133 |
+
- sah
|
134 |
+
- scn
|
135 |
+
- sco
|
136 |
+
- sd
|
137 |
+
- sgs
|
138 |
+
- sh
|
139 |
+
- si
|
140 |
+
- sk
|
141 |
+
- sl
|
142 |
+
- so
|
143 |
+
- sq
|
144 |
+
- sr
|
145 |
+
- su
|
146 |
+
- sv
|
147 |
+
- sw
|
148 |
+
- szl
|
149 |
+
- ta
|
150 |
+
- te
|
151 |
+
- tg
|
152 |
+
- th
|
153 |
+
- tk
|
154 |
+
- tl
|
155 |
+
- tr
|
156 |
+
- tt
|
157 |
+
- ug
|
158 |
+
- uk
|
159 |
+
- ur
|
160 |
+
- uz
|
161 |
+
- vec
|
162 |
+
- vep
|
163 |
+
- vi
|
164 |
+
- vls
|
165 |
+
- vo
|
166 |
+
- vro
|
167 |
+
- wa
|
168 |
+
- war
|
169 |
+
- wuu
|
170 |
+
- xmf
|
171 |
+
- yi
|
172 |
+
- yo
|
173 |
+
- yue
|
174 |
+
- zea
|
175 |
+
- zh
|
176 |
+
license: other
|
177 |
+
library_name: span-marker
|
178 |
+
tags:
|
179 |
+
- span-marker
|
180 |
+
- token-classification
|
181 |
+
- ner
|
182 |
+
- named-entity-recognition
|
183 |
+
- generated_from_span_marker_trainer
|
184 |
+
datasets:
|
185 |
+
- wikiann
|
186 |
+
metrics:
|
187 |
+
- precision
|
188 |
+
- recall
|
189 |
+
- f1
|
190 |
+
widget:
|
191 |
+
- text: جامعة بيزا (إيطاليا).
|
192 |
+
- text: تعلم في جامعة أوكسفورد، جامعة برنستون، جامعة كولومبيا.
|
193 |
+
- text: موطنها بلاد الشام تركيا.
|
194 |
+
- text: عادل إمام - نور الشريف
|
195 |
+
- text: فوكسي و بورتشا ضد مونكي دي لوفي و نامي
|
196 |
+
pipeline_tag: token-classification
|
197 |
+
base_model: xlm-roberta-base
|
198 |
+
model-index:
|
199 |
+
- name: SpanMarker with xlm-roberta-base on wikiann
|
200 |
+
results:
|
201 |
+
- task:
|
202 |
+
type: token-classification
|
203 |
+
name: Named Entity Recognition
|
204 |
+
dataset:
|
205 |
+
name: Unknown
|
206 |
+
type: wikiann
|
207 |
+
split: eval
|
208 |
+
metrics:
|
209 |
+
- type: f1
|
210 |
+
value: 0.8965362325351544
|
211 |
+
name: F1
|
212 |
+
- type: precision
|
213 |
+
value: 0.9077510917030568
|
214 |
+
name: Precision
|
215 |
+
- type: recall
|
216 |
+
value: 0.8855951007366646
|
217 |
+
name: Recall
|
218 |
+
---
|
219 |
+
|
220 |
+
# SpanMarker with xlm-roberta-base on wikiann
|
221 |
+
|
222 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [wikiann](https://huggingface.co/datasets/wikiann) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder.
|
223 |
+
|
224 |
+
## Model Details
|
225 |
+
|
226 |
+
### Model Description
|
227 |
+
- **Model Type:** SpanMarker
|
228 |
+
- **Encoder:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base)
|
229 |
+
- **Maximum Sequence Length:** 512 tokens
|
230 |
+
- **Maximum Entity Length:** 30 words
|
231 |
+
- **Training Dataset:** [wikiann](https://huggingface.co/datasets/wikiann)
|
232 |
+
- **Languages:** ace, af, als, am, an, ang, ar, arc, arz, as, ast, ay, az, ba, bar, be, bg, bh, bn, bo, br, bs, ca, cbk, cdo, ce, ceb, ckb, co, crh, cs, csb, cv, cy, da, de, diq, dv, el, eml, en, eo, es, et, eu, ext, fa, fi, fo, fr, frr, fur, fy, ga, gan, gd, gl, gn, gu, hak, he, hi, hr, hsb, hu, hy, ia, id, ig, ilo, io, is, it, ja, jbo, jv, ka, kk, km, kn, ko, ksh, ku, ky, la, lb, li, lij, lmo, ln, lt, lv, lzh, mg, mhr, mi, min, mk, ml, mn, mr, ms, mt, mwl, my, mzn, nan, nap, nds, ne, nl, nn, no, nov, oc, or, os, pa, pdc, pl, pms, pnb, ps, pt, qu, rm, ro, ru, rw, sa, sah, scn, sco, sd, sgs, sh, si, sk, sl, so, sq, sr, su, sv, sw, szl, ta, te, tg, th, tk, tl, tr, tt, ug, uk, ur, uz, vec, vep, vi, vls, vo, vro, wa, war, wuu, xmf, yi, yo, yue, zea, zh
|
233 |
+
- **License:** other
|
234 |
+
|
235 |
+
### Model Sources
|
236 |
+
|
237 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
238 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
239 |
+
|
240 |
+
### Model Labels
|
241 |
+
| Label | Examples |
|
242 |
+
|:------|:-----------------------------------------------------------------------|
|
243 |
+
| LOC | "شور بلاغ ( مقاطعة غرمي )", "دهنو ( تایباد )", "أقاليم ما وراء البحار" |
|
244 |
+
| ORG | "الحزب الاشتراكي", "نادي باسوش دي فيريرا", "دايو ( شركة )" |
|
245 |
+
| PER | "فرنسوا ميتيران،", "ديفيد نالبانديان", "حكم ( كرة قدم )" |
|
246 |
+
|
247 |
+
## Uses
|
248 |
+
|
249 |
+
### Direct Use for Inference
|
250 |
+
|
251 |
+
```python
|
252 |
+
from span_marker import SpanMarkerModel
|
253 |
+
|
254 |
+
# Download from the 🤗 Hub
|
255 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
256 |
+
# Run inference
|
257 |
+
entities = model.predict("موطنها بلاد الشام تركيا.")
|
258 |
+
```
|
259 |
+
|
260 |
+
### Downstream Use
|
261 |
+
You can finetune this model on your own dataset.
|
262 |
+
|
263 |
+
<details><summary>Click to expand</summary>
|
264 |
+
|
265 |
+
```python
|
266 |
+
from span_marker import SpanMarkerModel, Trainer
|
267 |
+
|
268 |
+
# Download from the 🤗 Hub
|
269 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
270 |
+
|
271 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
272 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
273 |
+
|
274 |
+
# Initialize a Trainer using the pretrained model & dataset
|
275 |
+
trainer = Trainer(
|
276 |
+
model=model,
|
277 |
+
train_dataset=dataset["train"],
|
278 |
+
eval_dataset=dataset["validation"],
|
279 |
+
)
|
280 |
+
trainer.train()
|
281 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
282 |
+
```
|
283 |
+
</details>
|
284 |
+
|
285 |
+
<!--
|
286 |
+
### Out-of-Scope Use
|
287 |
+
|
288 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
289 |
+
-->
|
290 |
+
|
291 |
+
<!--
|
292 |
+
## Bias, Risks and Limitations
|
293 |
+
|
294 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
295 |
+
-->
|
296 |
+
|
297 |
+
<!--
|
298 |
+
### Recommendations
|
299 |
+
|
300 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
301 |
+
-->
|
302 |
+
|
303 |
+
## Training Details
|
304 |
+
|
305 |
+
### Training Set Metrics
|
306 |
+
| Training set | Min | Median | Max |
|
307 |
+
|:----------------------|:----|:-------|:----|
|
308 |
+
| Sentence length | 3 | 6.4592 | 63 |
|
309 |
+
| Entities per sentence | 1 | 1.1251 | 13 |
|
310 |
+
|
311 |
+
### Training Hyperparameters
|
312 |
+
- learning_rate: 1e-05
|
313 |
+
- train_batch_size: 4
|
314 |
+
- eval_batch_size: 4
|
315 |
+
- seed: 42
|
316 |
+
- gradient_accumulation_steps: 2
|
317 |
+
- total_train_batch_size: 8
|
318 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
319 |
+
- lr_scheduler_type: linear
|
320 |
+
- lr_scheduler_warmup_ratio: 0.1
|
321 |
+
- num_epochs: 10
|
322 |
+
|
323 |
+
### Training Results
|
324 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
325 |
+
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
326 |
+
| 0.1989 | 500 | 0.1735 | 0.2667 | 0.0011 | 0.0021 | 0.4103 |
|
327 |
+
| 0.3979 | 1000 | 0.0808 | 0.7283 | 0.5314 | 0.6145 | 0.7716 |
|
328 |
+
| 0.5968 | 1500 | 0.0595 | 0.7876 | 0.6872 | 0.7340 | 0.8546 |
|
329 |
+
| 0.7957 | 2000 | 0.0532 | 0.8148 | 0.7600 | 0.7865 | 0.8823 |
|
330 |
+
| 0.9946 | 2500 | 0.0478 | 0.8485 | 0.8028 | 0.8250 | 0.9085 |
|
331 |
+
| 1.1936 | 3000 | 0.0419 | 0.8586 | 0.8084 | 0.8327 | 0.9101 |
|
332 |
+
| 1.3925 | 3500 | 0.0390 | 0.8628 | 0.8367 | 0.8495 | 0.9237 |
|
333 |
+
| 1.5914 | 4000 | 0.0456 | 0.8559 | 0.8299 | 0.8427 | 0.9231 |
|
334 |
+
| 1.7903 | 4500 | 0.0375 | 0.8682 | 0.8469 | 0.8574 | 0.9282 |
|
335 |
+
| 1.9893 | 5000 | 0.0323 | 0.8821 | 0.8635 | 0.8727 | 0.9348 |
|
336 |
+
| 2.1882 | 5500 | 0.0346 | 0.8781 | 0.8632 | 0.8706 | 0.9346 |
|
337 |
+
| 2.3871 | 6000 | 0.0318 | 0.8953 | 0.8523 | 0.8733 | 0.9345 |
|
338 |
+
| 2.5860 | 6500 | 0.0311 | 0.8861 | 0.8691 | 0.8775 | 0.9373 |
|
339 |
+
| 2.7850 | 7000 | 0.0323 | 0.89 | 0.8689 | 0.8793 | 0.9383 |
|
340 |
+
| 2.9839 | 7500 | 0.0310 | 0.8892 | 0.8780 | 0.8836 | 0.9419 |
|
341 |
+
| 3.1828 | 8000 | 0.0320 | 0.8817 | 0.8762 | 0.8790 | 0.9397 |
|
342 |
+
| 3.3817 | 8500 | 0.0291 | 0.8981 | 0.8778 | 0.8878 | 0.9438 |
|
343 |
+
| 3.5807 | 9000 | 0.0336 | 0.8972 | 0.8792 | 0.8881 | 0.9450 |
|
344 |
+
| 3.7796 | 9500 | 0.0323 | 0.8927 | 0.8757 | 0.8841 | 0.9424 |
|
345 |
+
| 3.9785 | 10000 | 0.0315 | 0.9028 | 0.8748 | 0.8886 | 0.9436 |
|
346 |
+
| 4.1774 | 10500 | 0.0330 | 0.8984 | 0.8855 | 0.8919 | 0.9458 |
|
347 |
+
| 4.3764 | 11000 | 0.0315 | 0.9023 | 0.8844 | 0.8933 | 0.9469 |
|
348 |
+
| 4.5753 | 11500 | 0.0305 | 0.9029 | 0.8886 | 0.8957 | 0.9486 |
|
349 |
+
| 4.6171 | 11605 | 0.0323 | 0.9078 | 0.8856 | 0.8965 | 0.9487 |
|
350 |
+
|
351 |
+
### Framework Versions
|
352 |
+
- Python: 3.10.12
|
353 |
+
- SpanMarker: 1.4.0
|
354 |
+
- Transformers: 4.34.1
|
355 |
+
- PyTorch: 2.1.0+cu118
|
356 |
+
- Datasets: 2.14.6
|
357 |
+
- Tokenizers: 0.14.1
|
358 |
+
|
359 |
+
## Citation
|
360 |
+
|
361 |
+
### BibTeX
|
362 |
+
```
|
363 |
+
@software{Aarsen_SpanMarker,
|
364 |
+
author = {Aarsen, Tom},
|
365 |
+
license = {Apache-2.0},
|
366 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
367 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
368 |
+
}
|
369 |
+
```
|
370 |
+
|
371 |
+
<!--
|
372 |
+
## Glossary
|
373 |
+
|
374 |
+
*Clearly define terms in order to be accessible across audiences.*
|
375 |
+
-->
|
376 |
+
|
377 |
+
<!--
|
378 |
+
## Model Card Authors
|
379 |
+
|
380 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
381 |
+
-->
|
382 |
+
|
383 |
+
<!--
|
384 |
+
## Model Card Contact
|
385 |
+
|
386 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
387 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "xlm-roberta-base",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"XLMRobertaForMaskedLM"
|
10 |
+
],
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": 0,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"diversity_penalty": 0.0,
|
20 |
+
"do_sample": false,
|
21 |
+
"early_stopping": false,
|
22 |
+
"encoder_no_repeat_ngram_size": 0,
|
23 |
+
"eos_token_id": 2,
|
24 |
+
"exponential_decay_length_penalty": null,
|
25 |
+
"finetuning_task": null,
|
26 |
+
"forced_bos_token_id": null,
|
27 |
+
"forced_eos_token_id": null,
|
28 |
+
"hidden_act": "gelu",
|
29 |
+
"hidden_dropout_prob": 0.1,
|
30 |
+
"hidden_size": 768,
|
31 |
+
"id2label": {
|
32 |
+
"0": "O",
|
33 |
+
"1": "B-PER",
|
34 |
+
"2": "I-PER",
|
35 |
+
"3": "B-ORG",
|
36 |
+
"4": "I-ORG",
|
37 |
+
"5": "B-LOC",
|
38 |
+
"6": "I-LOC"
|
39 |
+
},
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"intermediate_size": 3072,
|
42 |
+
"is_decoder": false,
|
43 |
+
"is_encoder_decoder": false,
|
44 |
+
"label2id": {
|
45 |
+
"B-LOC": 5,
|
46 |
+
"B-ORG": 3,
|
47 |
+
"B-PER": 1,
|
48 |
+
"I-LOC": 6,
|
49 |
+
"I-ORG": 4,
|
50 |
+
"I-PER": 2,
|
51 |
+
"O": 0
|
52 |
+
},
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"length_penalty": 1.0,
|
55 |
+
"max_length": 20,
|
56 |
+
"max_position_embeddings": 514,
|
57 |
+
"min_length": 0,
|
58 |
+
"model_type": "xlm-roberta",
|
59 |
+
"no_repeat_ngram_size": 0,
|
60 |
+
"num_attention_heads": 12,
|
61 |
+
"num_beam_groups": 1,
|
62 |
+
"num_beams": 1,
|
63 |
+
"num_hidden_layers": 12,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"output_attentions": false,
|
66 |
+
"output_hidden_states": false,
|
67 |
+
"output_past": true,
|
68 |
+
"output_scores": false,
|
69 |
+
"pad_token_id": 1,
|
70 |
+
"position_embedding_type": "absolute",
|
71 |
+
"prefix": null,
|
72 |
+
"problem_type": null,
|
73 |
+
"pruned_heads": {},
|
74 |
+
"remove_invalid_values": false,
|
75 |
+
"repetition_penalty": 1.0,
|
76 |
+
"return_dict": true,
|
77 |
+
"return_dict_in_generate": false,
|
78 |
+
"sep_token_id": null,
|
79 |
+
"suppress_tokens": null,
|
80 |
+
"task_specific_params": null,
|
81 |
+
"temperature": 1.0,
|
82 |
+
"tf_legacy_loss": false,
|
83 |
+
"tie_encoder_decoder": false,
|
84 |
+
"tie_word_embeddings": true,
|
85 |
+
"tokenizer_class": null,
|
86 |
+
"top_k": 50,
|
87 |
+
"top_p": 1.0,
|
88 |
+
"torch_dtype": null,
|
89 |
+
"torchscript": false,
|
90 |
+
"transformers_version": "4.34.1",
|
91 |
+
"type_vocab_size": 1,
|
92 |
+
"typical_p": 1.0,
|
93 |
+
"use_bfloat16": false,
|
94 |
+
"use_cache": true,
|
95 |
+
"vocab_size": 250008
|
96 |
+
},
|
97 |
+
"entity_max_length": 30,
|
98 |
+
"id2label": {
|
99 |
+
"0": "O",
|
100 |
+
"1": "LOC",
|
101 |
+
"2": "ORG",
|
102 |
+
"3": "PER"
|
103 |
+
},
|
104 |
+
"id2reduced_id": {
|
105 |
+
"0": 0,
|
106 |
+
"1": 3,
|
107 |
+
"2": 3,
|
108 |
+
"3": 2,
|
109 |
+
"4": 2,
|
110 |
+
"5": 1,
|
111 |
+
"6": 1
|
112 |
+
},
|
113 |
+
"label2id": {
|
114 |
+
"LOC": 1,
|
115 |
+
"O": 0,
|
116 |
+
"ORG": 2,
|
117 |
+
"PER": 3
|
118 |
+
},
|
119 |
+
"marker_max_length": 128,
|
120 |
+
"max_next_context": null,
|
121 |
+
"max_prev_context": null,
|
122 |
+
"model_max_length": 512,
|
123 |
+
"model_max_length_default": 512,
|
124 |
+
"model_type": "span-marker",
|
125 |
+
"span_marker_version": "1.4.0",
|
126 |
+
"torch_dtype": "float32",
|
127 |
+
"trained_with_document_context": false,
|
128 |
+
"transformers_version": "4.34.1",
|
129 |
+
"vocab_size": 250008
|
130 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01a5ef5fe0f14710d8e42af3a0f539a5475152fcb3b48b8f7bfc23313697ea31
|
3 |
+
size 1112287022
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:506eee40ca0b2e2c1091eb8c4a0862617a93f07e5daedd2ade14c8e511f13ac3
|
3 |
+
size 17083511
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"250001": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"250002": {
|
45 |
+
"content": "<start>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"250003": {
|
53 |
+
"content": "<end>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"bos_token": "<s>",
|
62 |
+
"clean_up_tokenization_spaces": true,
|
63 |
+
"cls_token": "<s>",
|
64 |
+
"entity_max_length": 30,
|
65 |
+
"eos_token": "</s>",
|
66 |
+
"mask_token": "<mask>",
|
67 |
+
"model_max_length": 512,
|
68 |
+
"pad_token": "<pad>",
|
69 |
+
"sep_token": "</s>",
|
70 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
71 |
+
"unk_token": "<unk>"
|
72 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:752f2c188cd7912006a5ed551aad0439b82667729154f2a1f570a7536165afd7
|
3 |
+
size 4536
|