--- language: - ar license: other library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - wikiann metrics: - precision - recall - f1 widget: - text: جامعة بيزا (إيطاليا). - text: تعلم في جامعة أوكسفورد، جامعة برنستون، جامعة كولومبيا. - text: موطنها بلاد الشام تركيا. - text: عادل إمام - نور الشريف - text: فوكسي و بورتشا ضد مونكي دي لوفي و نامي pipeline_tag: token-classification base_model: xlm-roberta-base model-index: - name: SpanMarker with xlm-roberta-base on wikiann results: - task: type: token-classification name: Named Entity Recognition dataset: name: Unknown type: wikiann split: eval metrics: - type: f1 value: 0.8965362325351544 name: F1 - type: precision value: 0.9077510917030568 name: Precision - type: recall value: 0.8855951007366646 name: Recall --- # SpanMarker(Arabic) with xlm-roberta-base on wikiann This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [wikiann](https://huggingface.co/datasets/wikiann) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) - **Maximum Sequence Length:** 512 tokens - **Maximum Entity Length:** 30 words - **Training Dataset:** [wikiann](https://huggingface.co/datasets/wikiann) - **Languages:** ar - **License:** other ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------| | LOC | "شور بلاغ ( مقاطعة غرمي )", "دهنو ( تایباد )", "أقاليم ما وراء البحار" | | ORG | "الحزب الاشتراكي", "نادي باسوش دي فيريرا", "دايو ( شركة )" | | PER | "فرنسوا ميتيران،", "ديفيد نالبانديان", "حكم ( كرة قدم )" | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("span_marker_model_id") # Run inference entities = model.predict("موطنها بلاد الشام تركيا.") ``` ### Downstream Use You can finetune this model on your own dataset.
Click to expand ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("span_marker_model_id") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("span_marker_model_id-finetuned") ```
## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:-------|:----| | Sentence length | 3 | 6.4592 | 63 | | Entities per sentence | 1 | 1.1251 | 13 | ### Training Hyperparameters - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.1989 | 500 | 0.1735 | 0.2667 | 0.0011 | 0.0021 | 0.4103 | | 0.3979 | 1000 | 0.0808 | 0.7283 | 0.5314 | 0.6145 | 0.7716 | | 0.5968 | 1500 | 0.0595 | 0.7876 | 0.6872 | 0.7340 | 0.8546 | | 0.7957 | 2000 | 0.0532 | 0.8148 | 0.7600 | 0.7865 | 0.8823 | | 0.9946 | 2500 | 0.0478 | 0.8485 | 0.8028 | 0.8250 | 0.9085 | | 1.1936 | 3000 | 0.0419 | 0.8586 | 0.8084 | 0.8327 | 0.9101 | | 1.3925 | 3500 | 0.0390 | 0.8628 | 0.8367 | 0.8495 | 0.9237 | | 1.5914 | 4000 | 0.0456 | 0.8559 | 0.8299 | 0.8427 | 0.9231 | | 1.7903 | 4500 | 0.0375 | 0.8682 | 0.8469 | 0.8574 | 0.9282 | | 1.9893 | 5000 | 0.0323 | 0.8821 | 0.8635 | 0.8727 | 0.9348 | | 2.1882 | 5500 | 0.0346 | 0.8781 | 0.8632 | 0.8706 | 0.9346 | | 2.3871 | 6000 | 0.0318 | 0.8953 | 0.8523 | 0.8733 | 0.9345 | | 2.5860 | 6500 | 0.0311 | 0.8861 | 0.8691 | 0.8775 | 0.9373 | | 2.7850 | 7000 | 0.0323 | 0.89 | 0.8689 | 0.8793 | 0.9383 | | 2.9839 | 7500 | 0.0310 | 0.8892 | 0.8780 | 0.8836 | 0.9419 | | 3.1828 | 8000 | 0.0320 | 0.8817 | 0.8762 | 0.8790 | 0.9397 | | 3.3817 | 8500 | 0.0291 | 0.8981 | 0.8778 | 0.8878 | 0.9438 | | 3.5807 | 9000 | 0.0336 | 0.8972 | 0.8792 | 0.8881 | 0.9450 | | 3.7796 | 9500 | 0.0323 | 0.8927 | 0.8757 | 0.8841 | 0.9424 | | 3.9785 | 10000 | 0.0315 | 0.9028 | 0.8748 | 0.8886 | 0.9436 | | 4.1774 | 10500 | 0.0330 | 0.8984 | 0.8855 | 0.8919 | 0.9458 | | 4.3764 | 11000 | 0.0315 | 0.9023 | 0.8844 | 0.8933 | 0.9469 | | 4.5753 | 11500 | 0.0305 | 0.9029 | 0.8886 | 0.8957 | 0.9486 | | 4.6171 | 11605 | 0.0323 | 0.9078 | 0.8856 | 0.8965 | 0.9487 | ### Framework Versions - Python: 3.10.12 - SpanMarker: 1.4.0 - Transformers: 4.34.1 - PyTorch: 2.1.0+cu118 - Datasets: 2.14.6 - Tokenizers: 0.14.1 ## Citation If you use this model, please cite: ``` @InProceedings{iahlt2023WikiANNArabicNER, author = "iahlt", title = "Arabic NER on WikiANN", year = "2023", publisher = "", location = "", } ```