--- license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: vit5-base_sentiment results: [] --- # vit5-base_sentiment This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8273 - F1: 0.6438 - Accuracy: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:--------:| | 0.8932 | 0.9984 | 312 | 0.7780 | 0.6134 | 0.669 | | 0.7353 | 2.0 | 625 | 0.7549 | 0.6252 | 0.6745 | | 0.6538 | 2.9984 | 937 | 0.7768 | 0.6320 | 0.6805 | | 0.5827 | 4.0 | 1250 | 0.7904 | 0.6379 | 0.6865 | | 0.5204 | 4.992 | 1560 | 0.8273 | 0.6438 | 0.6875 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1