File size: 1,613 Bytes
a300d4c
 
 
30a9f38
a300d4c
 
 
 
 
 
 
 
 
 
 
 
30a9f38
a300d4c
 
 
 
 
 
 
 
 
 
 
 
 
30a9f38
a300d4c
 
 
 
 
 
 
 
30a9f38
 
a5edb6b
a300d4c
 
 
 
 
e44617c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
datasets:
- iamkaikai/amazing_logos_v4
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
    
# Text-to-image finetuning - iamkaikai/amazing-logos-v4

This pipeline was finetuned from **runwayml/stable-diffusion-v1-5** on the **iamkaikai/amazing_logos_v4** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges']: 

![val_imgs_grid](./val_imgs_grid.png)


## Pipeline usage

You can use the pipeline like so:

```python
from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("iamkaikai/amazing-logos-v4", torch_dtype=torch.float16)
prompt = "Simple elegant logo for Grupo Altair Publicidad, Circle Lines Venezuela, Publishing, successful vibe, minimalist, thought-provoking, abstract, recognizable, relatable, sharp, vector art, even edges"
image = pipeline(prompt).images[0]
image.save("my_image.png")
```

## Training info

These are the key hyperparameters used during training:

* Epochs: 3
* Learning rate: 5e-07
* Batch size: 1
* Gradient accumulation steps: 1
* Image resolution: 512
* Mixed-precision: fp16


More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/iam-kai-kai/text2image-fine-tune/runs/pcwzffp2).